Modelling annual basal area increment of Scots pine stands using tree ring cores and multisource remote sensing data

Paweł Hawryło, Jarosław Socha, Vahid Nasiri

Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow, Poland

Motivation

- importance of basal area (BA) for forest management and wildlife
- previous studies used limited data
- identification of features that can be derived from RS data and used for stand-level predicion of BAI
- identification of stands that may suffer growth inhibition during drought conditions

Basal area

- describes the average amount of an area occupied by tree stems
- defined as the total cross-sectional area of all stems in a stand measured at breast height (1.3 m), and expressed as per unit of land area (m²/ha)
- it is usually calculated for stand based on measurements of DBH made for single trees at sample plots

Source of graphic: https://www.epa.nsw.gov.au/-/media/epa/corporate-site/resources/pnf/130035standbasalarea.pdf

Study area

- Scots pine stands
- stratification based on age and site classes
- 300 circular plots
- varying plot size (0.01 0.3 ha)

Data collected under the project: "Models of stand volume increment for main forest forming tree species in Poland" financed by State Forests – National Forest Holding in Poland

Field data collection

- field campaign 2022/2023
- minimum 30 trees per plot
- DBH
- height
- crown lenght
- species
- distance and azimuth
- minimum 10 years of annual tree ring width (TRW)
- TRW data collected from 9 665 trees

Calculation of annual BAI

- DBH of each tree updated based on TRW
- bark correction factor (1.115)
- annual basal area for each tree
- annual BA for plot
- BAI as difference of plot BA from subsequent years

Datasources for explanatory variables

- airborne laser scaning (ALS)
- Sentinel-2 satellite images
- MODIS (Moderate Resolution Imaging Spectroradiometer)
- TerraClimate

ALS

- lidR package for R
- mean height of ttops
- leaf area density (LAD)
- top height
- site index $H_2 = H_1 \frac{T_2^{b_1}(T_1^{b_1} \cdot R + b_2)}{T_1^{b_1}(T_2^{b_1} \cdot R + b_2)}$

• relative spacing index (RSI)

$$RSI = \frac{AS}{TH} \times 100 = \frac{10^4 \times \sqrt{\frac{2}{N \times \sqrt{3}}}}{TH}$$

LAD = 2.91

--- NDRE1 --- NDVI --- NDWI2190 --- PPI

- Google Earth Engine
- mean montlhy values form all available cloud-free pixels
- vegetation indices based on different wavelengths

MODIS

Earth Engine Data Catalog

MCD18C2.061 Photosynthetically Active Radiation Daily 3-Hour

Dataset Availability

2002-02-24T00:00:00Z-2024-04-01T00:00:00Z

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Earth Engine Snippet

ee.ImageCollection("MODIS/061/MCD18C2")

Tags

Citations

DOIs

Resolution

Bands

500 meters

Description

• mean values per day

Terms of Use

• averaged for months

TerraClimate

Earth Engine Data Catalog

Dataset Availability

1958-01-01T00:00:00Z-2023-12-01T00:00:00Z

Dataset Provider

University of California Merced

Earth Engine Snippet

ee.ImageCollection("IDAHO_EPSCOR/TERRACL]

Taos

Resolution 4638.3 meters						
Bands						
Name	Units	Min	Max	Scale	Description	
aet	mm	0*	3140*	0.1	Actual evapotranspiration, derived using a one-dimensional soil water balance model	
def	mm	0*	4548*	0.1	Climate water deficit, derived using a one-dimensional soil water balance model	
pdsi		-4317*	3418*	0.01	Palmer Drought Severity Index	
pet	mm	0*	4548*	0.1	Reference evapotranspiration (ASCE Penman-Montieth)	
pr	mm	0*	7245*		Precipitation accumulation	
ro	mm	0*	12560*		Runoff, derived using a one-dimensional soil water balance model	
soil	mm	0*	8882*	0.1	Soil moisture, derived using a one-dimensional soil water balance model	
srad	W/m^2	0*	5477*	0.1	Downward surface shortwave radiation	
swe	mm	0*	32767*		Snow water equivalent, derived using a one-dimensional soil water balance model	
tmmn	°C	-770*	387*	0.1	Minimum temperature	
tmmx	°C	-670*	576*	0.1	Maximum temperature	
vap	kPa	0*	14749*	0.001	Vapor pressure	
vpd	kPa	0*	1113*	0.01	Vapor pressure deficit	
vs * estim	m/s nated min or m	0* ax value	2923*	0.01	Wind-speed at 10m	

Generalized Additive Models (GAM)

$$y = \beta_0 + f_1(x_1) + f_2(x_2) + \dots + f_p(x_p) + \epsilon$$

- 80/20 train vs. test proportion of sample plots
- training on years 2017-2020
- validation on years 2021-2022
- four models: stand, ALS, climate, spectral (spectral = full model)

Results – selected predictors

	 Signif. codes: 0 '***' 0.001 '**'	0.01'*'0	05'.'	0.1''	1			
	Approximate significance of smooth	terms:						
		edf	Ref.df	F	p-value			
ctand	s(BA)	6.048229	9	92.229	< 2e-16	***		
Stand	s(age)	5.782944	9	6.600	< 2e-16	***		
	s(rsi)	2.580188	3	14.862	< 2e-16	***		
	s(lad)	0.638997	9	0.197	0.089223			
ALS	s(SI)	1.675895	9	0.908	0.002695	**		
	s(pdsi_10)	0.893444	9	0.186	0.071284	•		
	s(tmmx_3)	1.963607	9	1.309	0.000266	***		
1• i	s(pr_4,pr_6,pr_10)	5.175798	109	0.140	0.001200	**		
climate	s(PAR_4,PAR_9)	0.000263	29	0.000	0.394512			
	s(NDVI_4,NDVI_6,NDVI_8)	12.373157	109	0.393	< 2e-16	***		
	s(NDWI1610_4,NDWI1610_6,NDWI1610_8)	4.375990	109	0.114	0.001040	**		
cnoctrol	s(PPI_4,PPI_9)	6.936955	29	0.587	0.002698	**		
spectral	s(NDRE_4,NDRE_9)	6.353330	29	0.602	0.000393	***		
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
	R-sq.(adj) = 0.768 Deviance explained = 78.2%							
	-REML = -165.53 Scale est. = 0.034848 n = 916							

Results – model validation

- 62 plots,
- 72 observations (10 from 2022)

	stand	ALS	climate	spectral
RMSE	0,206	0.203	0.206	0.173
RMSE%	27.0	26.6	27.2	22.7
MAE	0.158	0.158	0.162	0.136
MAE%	20.8	20.8	21.4	17.9
R ²	0.68	0.69	0.69	0.78

Results – partial effect plots

Results - partial effect plots

s(pr_4,pr_6,pr_10)

Results - partial effect plots

Partial effect 0.10 0.05 0.00

-0.05

-0.10

Results – adjusted predictions

Summary / Conclusions

- RSI and site index were the best ALS-derived predictors
- spectral data substantially improved model performance
- spectral predictors improved model more than climatic variables
- NDVI was the best predictor of BAI among tested VIs

Next steps

- evaluation of how ALS-derived BA accuracy influence predictions of BAI
- separate models for thinned / not thinned stands data from previous field campaign (2015-2022)
- cummulative values of VIs and climatic variables
- extend analysis to new regions and species
- analyse single tree growth including RS-derived metrics
- any suggestions?

Thank you for your attention!