

Analysis of the information capability of spectral indices in remote sensing of mistletoe (Viscum album ssp. austriacum L.) in pine stands, acquired using unmanned aerial platforms (BSP)

Jakub Miszczyszyn^{1, 2}

¹Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow ²Polish Geographical Society, Branch of Remote Sensing

PHOTOGRAMMETRY SURVEY BACKGROUND

The study was carried out on a fragment of a stand located in the area of the Niepolomice Forest District, in department number 83 (dominant species - Scots pine (Pinus sylvestris L.), age 108 years; average tree height 28 m; average breast height 36 cm; according to BDL 2022). A photogrammetric survey was performed (ProGea SKY; Trinity F90+; dual-payload: Sony UMC and Micasense RedEdge-M).

Special thanks go to Piotr Weżyk at ProGea SKY for providing the aerial data.

The aim of this study is to determine the information potential of spectral indices calculated from a true multispectral orthophoto, acquired using BSP, in the detection of mistletoe clusters in pine stands. esri

A total of 820 training fields were vectorised, representing 6 classes: clearcuts-70, gaps-100, dead trees-50, deciduous trees-100, coniferous trees-100, mistletoe cluster-400. For each training field, statistics of individual spectral indices were calculated.

METHODS

then used to evaluate the potential of the spectral indices in mistletoe cluster detection based on the classification performed.

	C	ART	KNN	SVM	RF		RES	ULI	S					
Mean Ka value	ppa 0	,70	0,71	0,85	0,88		No.	RGB	Total Kappa value	MS	Total Kappa value	Index	Mean correlation	
Mean Kappa value of learning algorithms						1	BITM	1,8485	MTVI1	1,8618	RI4XS	0,10		
				Total Kappa value]	2	VIG	1,8264	VARI700	1,8616	GARI	0,31	
	SVM		RF				3	SI	1,8102	GBNDVI	1,8608	TCARI	0,37	
MTVI1	0,9411	0,	,9207	1,8	618		4	NGRDI	1,8026	NormG	1,8605	VARI700	0,38	
VgNIRBI	0,9406	C),921	1,8	616		5	TGI	1.7978	GOSAVI	1.8579	NDDI	0,38	
GBNDVI	0,927	0,	,9338	1,8	608		C		1 75 27		1.0521	TCARIOSAV	0.20	
NormG	0,9406	0,	,9199	1,8	605		6	NDTI	1,/53/	GRNDVI	1,8521	I I	0,39	
GOSAVI	0,9236	0,	,9343	1,8	579		7	RGRI	1,7513	TCI	1,8506	BCC	0,41	
GRNDVI	0,9308	0,	,9213	1,8	521		8	MGRVI	1,7489	GNDVI	1,841	BNDVI	0.44	
TDVI	0,9193	0,	,9313	1,8	506		0	DI	1 7442		1 0261		0,15	
BITM	0,9311	0,	,9174	1,84	485		9	KI	1,7445	RDVI	1,8301	NDYI	0,45	
GNDVI	0,9267	0,	,9143	1,8	341		10	ExGR	1,7442	NDSII	1,8306	SR	0,45	
Total Kappa value of indices								Top 10 indices accord to RGB and MS imaginery					Set of the lowest mean	

CONCLUSIONS

- Classification of mistletoe clusters using infrared and rededge channels has on average better results than classification based on spectral channels of visible light.
- The indicators with the highest information potential are MTVI1, VgNIRBI, GBNDVI.
- When only RGB images are available, the best indicators are BITM, VIG, SI.
- The indices are highly correlated with each other. The least correlated of all are RI4XS, GARI, TCARI, VARI700.
- The results obtained can form the basis for further research, which will create a multichannel raster built from the least correlated indicators and subjected to classification using SVM or RF.
- The data obtained provide a good database for use in training a convolutional neural network CCNN).

correlation

