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Combining high-resolution

climate, remote sensing and

topographic data to model radial

tree-growth

TREOS

- A sub-continental Tree-Ring 

and EOS network with more 

than 700 sites

- sampled after the end of 

growing season in 2018

- 8 main and 5 minor tree 

species
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Extraction of E-OBS climate data

(seasonal and long-term

averages)

- temperatures

- precipitation

- climatic water balance

Extraction of EOS data

Sentinel 1 

- Synthetic-aperture radar (SAR), 5 m 

resolution

- VV and VH backscatter give 

information on surface roughness, 

water content, geometrical properties 

of vegetation, leaf area index (LAI)

- Radar vegetation index (RVI) 

increases with forest biomass

Sentinel 2, surface reflectance, 10-20 m 

resolution

- NDVI, EVI (measure photosynthetic 

activity)

- NDRE (red edge – vegetation health)

- NDMI (proxy for moisture) 

Elevation data - EU-DEM raster

with 25m resolution
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Modelling approach

RF were calibrated at different levels of complexity

- General model using all data

- 3 forest type models

- 8 species-specific models

The estimation of area of applicability (AOA) for 

the established models

Model evaluation exclusively on independent data 

(k –fold spatially blocked cross-validation)

Machine learning – Random Forest of Regression 

Tress (RF)
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The explained variance ranged from 13% to 52% and was 

generally higher for species-specific models 
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Results

The explained variance ranged from 13% to 52% and was 

generally higher for species-specific models 

Including EOS into the models improved the prediction 

accuracy of secondary tree growth in terms of Δr2 by 6% 

on average, and up to 11%

NDMI (moisture index) was the most important 

predictor variable across species

SAR (Sentinel - 1) 

was included in 8 out 

of 12 models 



Annual radial tree 

growth for 2021 at 0.05

spatial resolution 
Combination of the three forest type 

models

Very realistic spatial distribution of 

tree-growth predictions



Annual radial tree 

growth for 2021 at 0.05

spatial resolution 
The area of applicability (AOA) 

ranged from 61% - 87% 
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Thank you for your listening!

jernej.jevsenak@gozdis.si

Link to publication
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