Estimation of tree volume at sample plot level using terrestrial laser scanning technology

Grzegorz Krok ${ }^{1,2}$, Krzysztof Stereńczak ${ }^{1}$, Bartłomiej Kraszewski ${ }^{1}$

[^0]
What is the volume of a tree?

Is the amount of wood accumulated in trees $\left[\mathrm{m}^{3}\right]$, can be scaled up to $\left[\mathrm{m}^{3} / \mathrm{ha}\right.$] to characterize entire stands.

Why is information about tree volume important?

With accurate information on forest resources, foresters can:

- manage forests in a sustainable way,
- plan silvicultural and management activities,
- estimate economic income

How to measure tree volume?

Terrestrial Laser Scanning (TLS)

Direct measurement of tree volume - Quantitative Structure Model (QSM)

- high-quality data needed
- high-end laser scanning devices are necessery
- multiple TLS positions during data acqusition are necessery

Limitation of TLS technology in tree surveys

- In operational data acquisition, the TLS point cloud for the upper parts of trees is sometimes too sparse to be able to reconstruct the shape of the stem and upper parts of canopy.
- According to some studies it is possible to map stems to an average of $55-66 \%$ of the relative height of trees (Liang et al., 2014, 2018; Saarinen et al., 2017)

Development of a tree height-independent approach for estimating the total merchantable tree volume that can be applied to terrestrial laser scanner data.

The method assumes that neither information about the tree height nor about the structure of the upper parts of the tree is required for the estimation of the tree volume.

The method only uses information about the lower part of the stem, i.e. the part that is most visible to the TLS scanner.

Secondary objectives:

- compare the estimation results of the developed method to the method currently used in practice (method using conventional measurements - DBH, H)
- check which part of the stem has to be mapped in order to obtain better results than the conventional method
- test the method at sample plot level in different stratification groups

Methods

IBL

Individual tree dataset (development of method)
Field data

- 2983 trees
- 8 species
- Sectional measurments
- $V_{\text {REF }}$ (sections)
- $V_{\text {ALLom }}$ (DBH, H allometrics)

TLS data

- 263 trees
- Multi-Scan Approach
- 3 positions per tree

Stem Accumulated Volume (SAV)

New predictor of total tree volume - Stem Accumulated Volume (SAV).
i.e.

SAV-3m - stem volume up to 3 metres

Stem Accumulated Volume Models (SM)

General SM equation:

$y=a x^{b}$

where:

y-total merchantable volume;
a, b - model coefficients ;
x-Stem Accumulated Volume (SAV) value

The MMS models were built from sectional destructive measurments data of the individual trees dataset ($\mathbf{n} \sim \mathbf{2 7 0 0}$).
Trees with TLS data were not used in the process of building the models (indpendent verictaion dataset).
The MMS models use SMPs from 1 to 15 m , which can be determined from sectional survey data or TLS.

The models were prepared in three variants:

1. SM-WS: without the use of species information;
2. SM-GRP: including information on tree species group (coniferous/ deciduous);
3. SM-SPC: including individual species information (Pine, Spruce, Larch, Fir, Oak, Beech, Birch, Alder).

TLS data processing

"Virtual" measurments of tree taper curve and Stem Accumulated Volume ($\mathrm{SAV}_{\text {TLS }}$) calucaltion

Individual tree level

Correlation between Stem Accumulated Volume and
 Total Merchantable Volume (destructive measurements)

$$
r=0,94-0,99
$$

Higher SAV = Higher Correlation

Coniferous > Deciduous

Individual tree level

Independent validation dataset ($\mathrm{N}=263$) SM on TLS data
 $\mathrm{V}_{\text {Alom }}$ on traditional field data

RMSE

SM : 55\% to 15,7\%
$\mathrm{V}_{\text {ALLOM }}$: 21 \%

SM-WS - SAV model without species information
SM-GRP - SAV model with species group information
SM-SPC - SAV model with individual species information
$\mathrm{V}_{\text {ALLom }}=$ Allometrics (DBH, H$)$ - traditional method

Growing Stock Volume [m ${ }^{3} / \mathrm{ha}$]

GSV estimates

All sample plots ($\mathrm{N}=100$)

GSV estimates

 Tree detection rateMean accuracy of tree detection for whole dataset: 88\%

	Tree Detection rate	GSV difference on medians
	0-50 \%	142-147 $\mathrm{m}^{3} / \mathrm{ha}$ (33-34\%)
	50-75 \%	$56-64 \mathrm{~m}^{3} / \mathrm{ha}(13-14 \%)$
	75-90 \%	$37-47 \mathrm{~m}^{3} / \mathrm{ha}$ (9-12\%)
	90-100 \%	8-12 m ${ }^{3} / \mathrm{ha}$ (2-3\%)

SM-WS - SAV model without species information SM-GRP - SAV model with species group information
SM-SPC - SAV model with individual species information
$\mathrm{V}_{\text {PP-ALLom }}=$ Allometrics (DBH, H) - traditional method

- The Stem Acummulated Volume (SAV) is strongly correlated with the total merchantable volume of the trees and can be used as a predictor of this feature.
- With a mapped stem up to a height of 8-10 metres, it is possible to determine the volume of trees at an equivalent level to the traditional method. When stems are mapped higher than 10 metres, more accurate tree volume determination can be expected.
- It is possible to determine the growing stock volume at the sample plot with a precision comparable to the traditional method, assuming that all trees are detected and their trunks measured to a height of at least 8-10 metres.

Thanks for attention.

Grzegorz Krok
g.a.krok@gmail.com

in https://www.linkedin.com/in/grzegorz-krok-28b1b179/

R^{6} https://www.researchgate.net/profile/Grzegorz-Krok

[^0]: 1 Department of Geomatics, Forest Reserach Institute
 2 BitApps Group

