Trend analysis of Zagros forest dynamics and its responses to climate change: time series analysis using Google Earth Engine

<u>Vahid Nasiri</u>¹, Ahmad Abbasnezhad Alchin², Pawel Hawryło¹, Luiza Tymińska-Czabańska¹, Jarosław Socha¹

1. Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow. Poland

XX

2. Department of Forestry and Forest Economics, Faculty of Natural Resources, University of Tehran, Iran.

Content

31

Results

1 Introduction

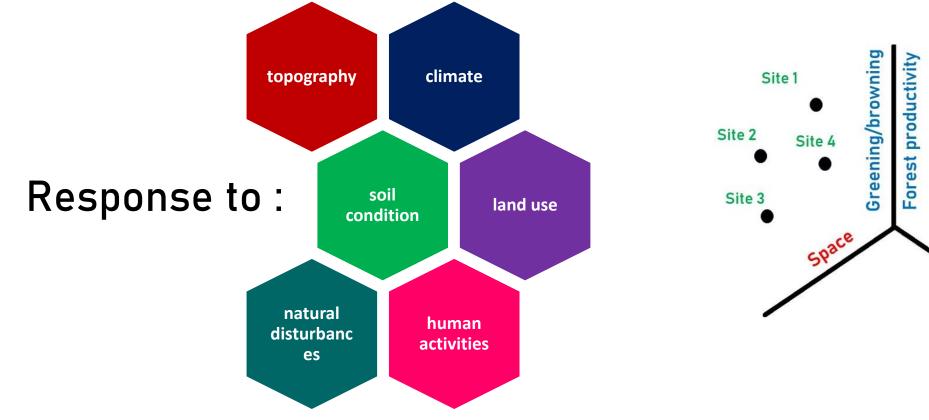
- Forest dynamics
- Greening and browning
- large-scale monitoring and remote sensing
- o Objectives

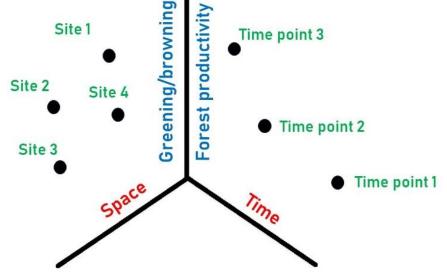
2: Materials and methods

Zagros forests

• Datasets

• Statistical methods


• Trend analysis


• Correlation and time lag analysis Discussion and Conclusion

Introduction : Forest dynamics

Changing patterns of vegetation growth and density <u>across different geographical</u> location and <u>time periods</u>.

Introduction : spatiotemporal variation in forest dynamics

Abrupt

- significant changes
- occur rapidly
- often unpredictably.
- Wildfire, Storm, Landslides, ...

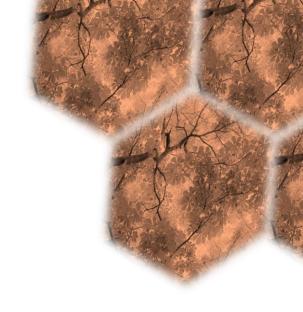
Seasonal

surface phenological events

Next step: trends in phenological stages

Long-term

 gradual climate change such as temperature, precipitation, or changes due to some land management practices.


Introduction : greening and browning trends

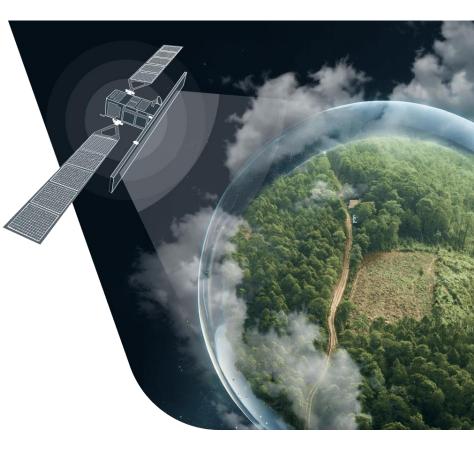
Greening: a positive trend in vegetation health and productivity Favorable environmental conditions: <u>Warmer temperatures, sufficient moisture, and increased atmospheric carbon dioxide levels.</u> Enhance:

Forest growth, expansion of forested areas, and improved ecosystem services.

Browning: negative trend in vegetation health and productivity Unfavorable climatic condition + stressors and disturbances: <u>drought, heatwaves, nutrient deficiencies, pest outbreaks, diseases, and human disturbances</u> Weaken:

Forest growth, canopy density, foliage discoloration, dieback, or mortality, provision of ecosystem services

Introduction : large-scale monitoring and remote sensing


Greening and browning process:

- mostly visible at the landscape level
- necessitating a long-term and large-scale monitoring
- detecting changes in vegetation attributes as well as driving factors

(Climate, disturbances, etc.)

- Satellite imagery
- Spatial statistical methods
- Computing platforms

Introduction : Objectives

- Assess greening and browning trends in the Zagros forest using time-series vegetation indices.
- ✓ Investigate of the spatial and temporal trends of climatic factors

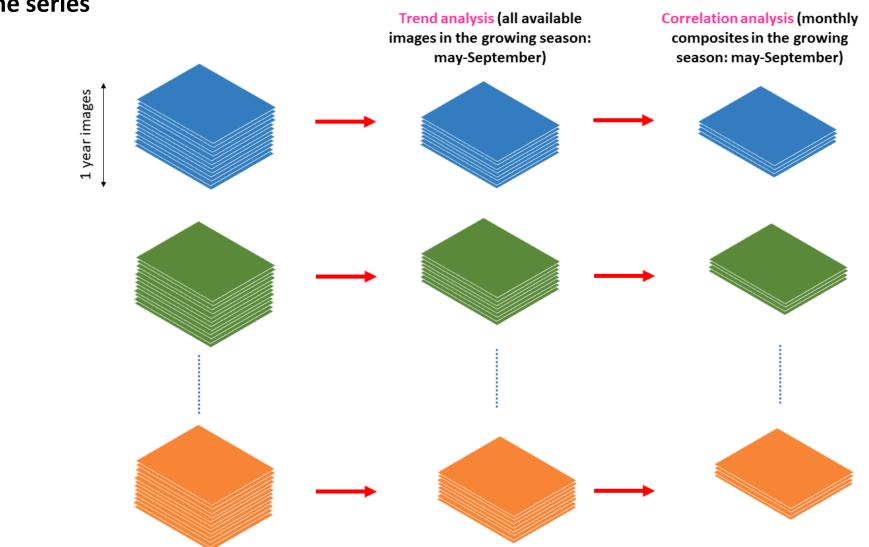
✓ Determine how climatic and factors (LSTd, LSTn, ET, and Prec) are related to long-term trends in the greening and browning process

Materials and methods : Zagros forests

- Elevation ranges between 650 and 2400 meters
- Annual precipitation varies between 600 and 800 mm
- Annual temperature fluctuates between 10 and 25 °C
- 2 million of Iran's population live in this region
- Dominant tree species include *Persian oak* (Quercus brantii), gall oak (Q. infectoria), wild pistachio (Pistacia atlantica), and Montpellier maple (Acer monspessulanum).
- Palynological studies by Van Zeist and Wright Jr (1963) and Safaeirad et al. (2014) have suggested that the pinnacle of development of these forests in their current form (i.e., oak forests) occurred 5500 to 6500 years ago.

Materials and methods : **Datasets (vegetation indices)**

MOD13Q1.061 Ter	ra Vegetation Indices 16-Day Global 250m	Desc	cription	Bands	Terms of Use
	Dataset Availability 2000-02-18T00:00:00Z-2024-04-06T00:00:00Z Dataset Provider NASA LP DAAC at the USGS EROS Center		solution) meters nds		
	Earth Engine Snippet	Name			Units
1 Ass	ee.ImageCollection("MODIS/061/MOD13Q1")	NDVI			
MYD13Q1.061 Aqua	a Vegetation Indices 16-Day Global 250m	Desc	cription	Bands	Terms of Use
	Dataset Availability 2002-07-04T00:00:00Z-2024-04-14T00:00:00Z Dataset Provider NASA LP DAAC at the USGS EROS Center		solution) meters nds	_	
The second	ee.ImageCollection("MODIS/061/MYD13Q1")		Name		Units
		NDVI			
PML_V2 0.1.7: Coup	pled Evapotranspiration and Gross Primary Product (GPP)	Description	Bands	Terms of Us	se Citations
	Dataset Availability 2000-02-26T00:00Z-2020-12-26T00:002 Dataset Provider	Resolution 500 meters Bands			
	PML_V2 Earth Engine Snippet	Name	Units	Mir	n Max
	ee.ImageCollection("CAS/IGSNRR/PML/V2_v017")	GPP	gC m-2 d-1	I 0*	39.01*



Materials and methods : Datasets (climatic factors)

MOD11A2.061 Terra 1km	a Land Surface Temperature and Emissivity 8-Day Global	Descriptio	n Band	s Terms of	Use Cit	ations	DOIs
	Dataset Availability 2000-02-18T00:00:00Z-2024-04-22T00:00:00Z Dataset Provider	Resolutio 1000 me Bands					
	NASA LP DAAC at the USGS EROS Center Earth Engine Snippet	Name LST_Day_1	Name LST_Day_1km		Units K	Min 7500	Max 65535
	ee.ImageCollection("MODIS/061/MOD11A2")	LST_Night	_1km		К	7500	65635
CHIRPS Daily: Clima (Version 2.0 Final)	ate Hazards Group InfraRed Precipitation With Station Data Dataset Availability 1981-01-01T00:00:00Z-2024-03-31T00:00Z Dataset Provider	Res	colution colution 6 meters	Bands T	erms of Use	Cita	tions
	UCSB/CHG Earth Engine Snippet ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY")	Name	pitation.				Units mm/d
MOD16A2.061: Tei	rra Net Evapotranspiration 8-Day Global 500m	Description	Bands	Terms of Us	se Cita	tions	DOIs
	Dataset Availability 2001-01-01T00:00:00Z-2024-04-14T00:00:00Z Dataset Provider NASA LP DAAC at the USGS EROS Center	Resolution 500 meters Bands					
	ee.ImageCollection("MODIS/061/MOD16A2")	Name ET	Units ka/m^2/80	lav	Min -327		Max 32700

Materials and methods : Datasets

Aggregation of time series

Materials and methods : Statistical methods (pixel level)

• Trend analysis: Mann-Kendall trend test

$$S = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} sgn(x_i - x_j)$$

$$sgn(x) = \begin{cases} +1 & if (x_i - x_j) > 0\\ 0 & if (x_i - x_j) = 0\\ -1 & if (x_i - x_j) < 0 \end{cases}$$

$$\tau = \frac{2s}{n(n-1)}$$

$$r_{VI,CF} = \frac{\sum_{i=1}^{n} (VI_i - \overline{VI})(CF_i - \overline{CF})}{\sqrt{\sum_{i=1}^{n} (VI_i - \overline{VI})^2 \sum_{i=1}^{n} (CF_i - CF)^2}}$$

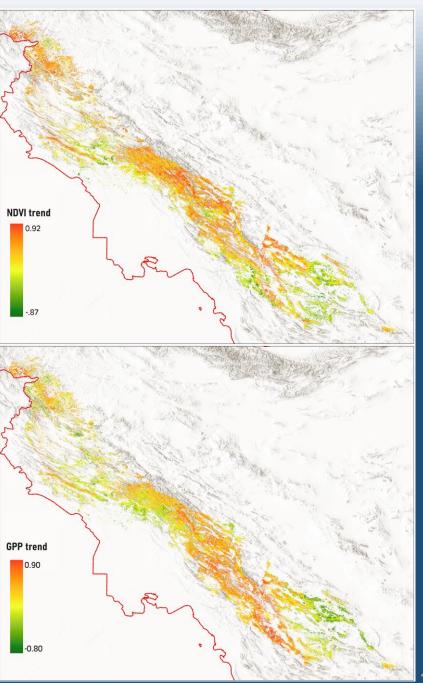
The correlation was computed within the same month and with increasing backward time lags: one-month lag, two-month lag, and three-month lag.

$$Var(S) = \frac{x(x-1)(2x+5) - \sum_{i=1}^{m} t_i(t_i-1)(2t_i+5)}{18}$$

$$Z_{s} = \begin{cases} \frac{S-1}{\sqrt{var(S)}} & for & S > 0\\ 0 & for & S = 0\\ \frac{S+1}{\sqrt{var(S)}} & for & S < 0 \end{cases}$$

 x_i and x_j are the dataset amounts in time points *i* and *j* (*j*>*i*) respectively, *n* is the number of input data sets, *S* is the Kendall score, τ range is between -1 and +1, with -1 denoting a regularly declining trend or increasing trend, *Var*(*S*) represents the variance *S* and *Z*_*s* indicates the *Z* statistic.

 $r_{VI,CF}$ is the correlation coefficient, *n* is the number of the observation in time series); *i* is the time ; VI_i and CF_i are the vegetation index and climatic factor respectively in time *i*; \overline{VI} is the mean of the vegetation index and \overline{CF} is the mean of the climatic factor.

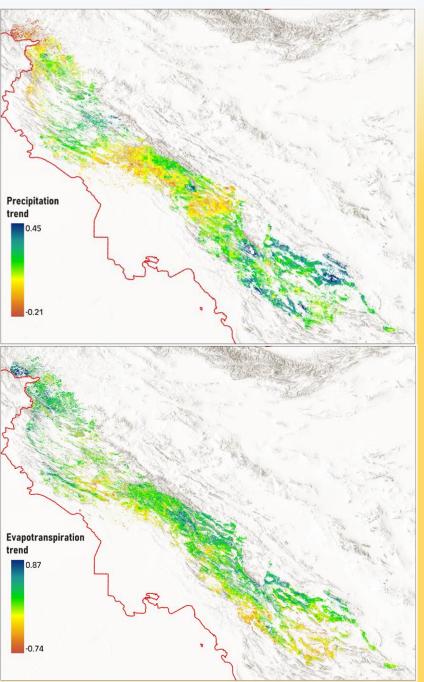


Results: Trend analysis

Trends in <u>NDVI and GPP</u>

		GPP (ha)	GPP %	NDVI (ha)	NDVI %
	Significant decreasing trend	77,031.25	1.28	44,475	0.74
Significant Mann–	Insignificant decreasing trend	528,331.25	8.79	280,950	4.67
Kendall (level of	stable	34,468.75	0.57	26,243.75	0.44
significance = 0.05)	Insignificant increasing trend	1,874,118.75	31.17	1,465,218.75	24.37
	Significant increasing trend	3,498,068.75	58.18	4,196,656.25	69.79
			00 7E 0/		0/ 16 0/

89.35 % 94.16 %

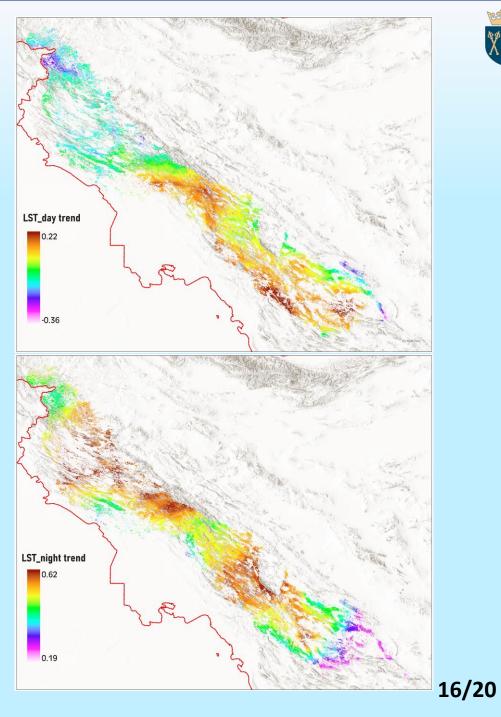

14/20

XX

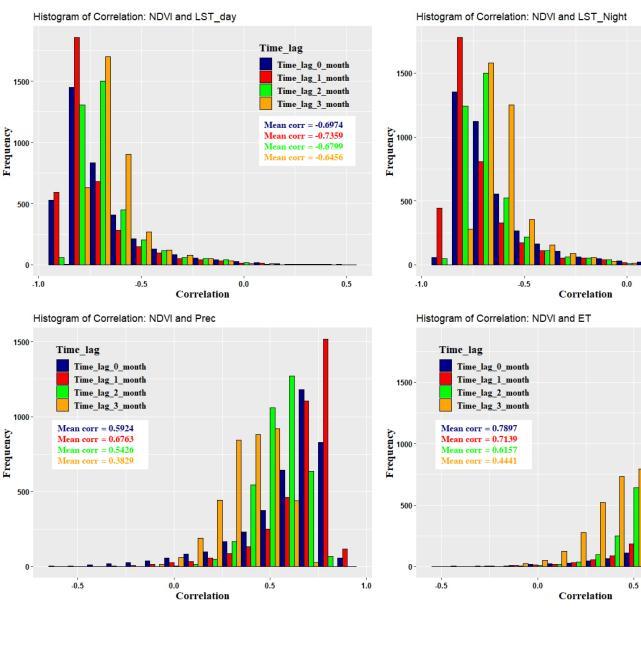
Results: Trend analysis

Trends in evapotranspiration (ET) and precipitation (prec)

		ET (ha)	ET %	P (ha)	Р%
Mann–Kendall	Significant decreasing trend	17,400	0.29	0	0
Significant Mann– Kendall	Insignificant decreasing trend	286,300	4.75	126,050	2.09
(level of significance =	stable	37,600	0.62	25,550	0.42
0.05)	Insignificant increasing trend	3,247,000	53.92	5,672,875	94.27
	Significant increasing trend	2,433,825	40.41	192,925	3.21
			94.33 %		97.48 %



Results: Trend analysis


Trends during 2001-2024 in day time LST (LST-D) and night time LST (LST-N)

		LST_D (ha)	LST_D %	LST_N (ha)	LST_N %
	Significant	0	0	0	0
Significant Mann-	decreasing trend		0		
Kendall	Insignificant	1,694,050	28.15	0	0
Significant Mann-	decreasing trend				
Kendall	stable	100,950	1.68	0	0
(level of	Insignificant				
significance = 0.05)	increasing trend	4,199,175	69.78	52,900	0.88
	Significant increasing trend	23,225	0.39	5,9645,00	99.12
	increasing trend		70.17 %		100 %

Ŷ

Results: Correlation and time lag analysis (NDVI)

NDVI and climatic factors:

- Negative correlation between LST (day and night) and NDVI
- Positive correlation between precipitation and evapotranspiration with NDVI
- Highest correlation = NDVI & ET (0.7897)
- There is no time lag effect between NDVI and ET in most parts of the study area.
- The highest correlation between LST (day and night) and NDVI was observed with a one-month time lag.
- The highest correlation between precipitation and NDVI was observed with a one-month time lag.
- The impact of precipitation on vegetation growth diminishes more rapidly over time compared to the impact of land surface temperature.

1.0

Time lag

Time lag 0 month

Time lag 1 month

Time lag 2 month

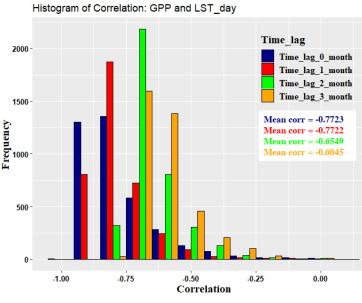
Time lag 3 month

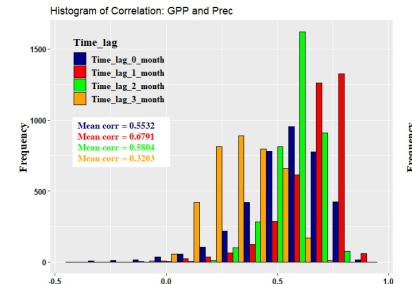
Mean corr = -0.6537

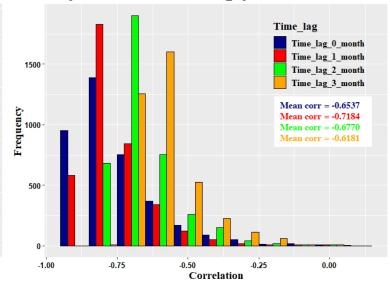
Mean corr = -0.7184

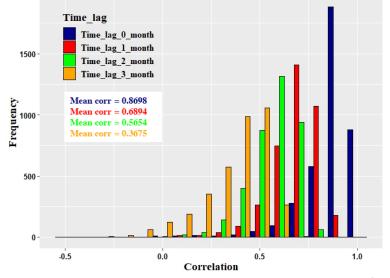
Mean corr = -0.6770

Mean corr = -0.6181


0.5


Results: Correlation and time lag analysis (GPP)


- Negative correlation between LST (day and night) and GPP
- Positive correlation between precipitation and evapotranspiration with GPP
- Highest correlation = GPP & ET (0.8698)
- There is no time lag effect between GPP and ET in most parts of the study area.
- The highest correlation between LST (day and night) and GPP was observed with a one-month time lag.
- The highest correlation between precipitation and GPP was observed with a one-month time lag.
- The impact of precipitation and evapotranspiration on GPP diminishes more rapidly over time compared to the impact of land surface temperature.



Correlation

Histogram of Correlation: GPP and ET

Discussion and Conclusion:

• An increase trend was observed in the quantity and productivity of the Zagros forests.

These findings are in connection with (Emmett et al. 2019; Tian et al. 2021; Zhu et al. 2023).

• A greening trend is related to increased precipitation, warmer temperatures, and higher levels of CO2 in the atmosphere, which stimulate photosynthesis and plant growth.

An increasing trend in temperature, precipitation, and evapotranspiration has been detected.

• In some parts of the study area, a decreasing trend or browning trend was observed (6-10% of the study area)

• A browning trend can be related to insect infestation, disease outbreaks, wildfires, and human activities. We don't have such dataset to identify the exact drivers, but based on our knowledge from the study area, there are such disturbances in Zagros forests.

Discussion and Conclusion:

- Advantage of the datasets: A dense time series, with a temporal resolution of 1-8 days, can help account for all of the small changes.
- Limitation of the datasets: The coarse spatial resolution of the dataset used may not capture fine-scale vegetation changes or variations in climatic conditions within heterogeneous landscapes.
- Based on the results, the GEE can be considered as a powerful data source and processing platform for long-term vegetation dynamics and climate change analysis.

Contact :

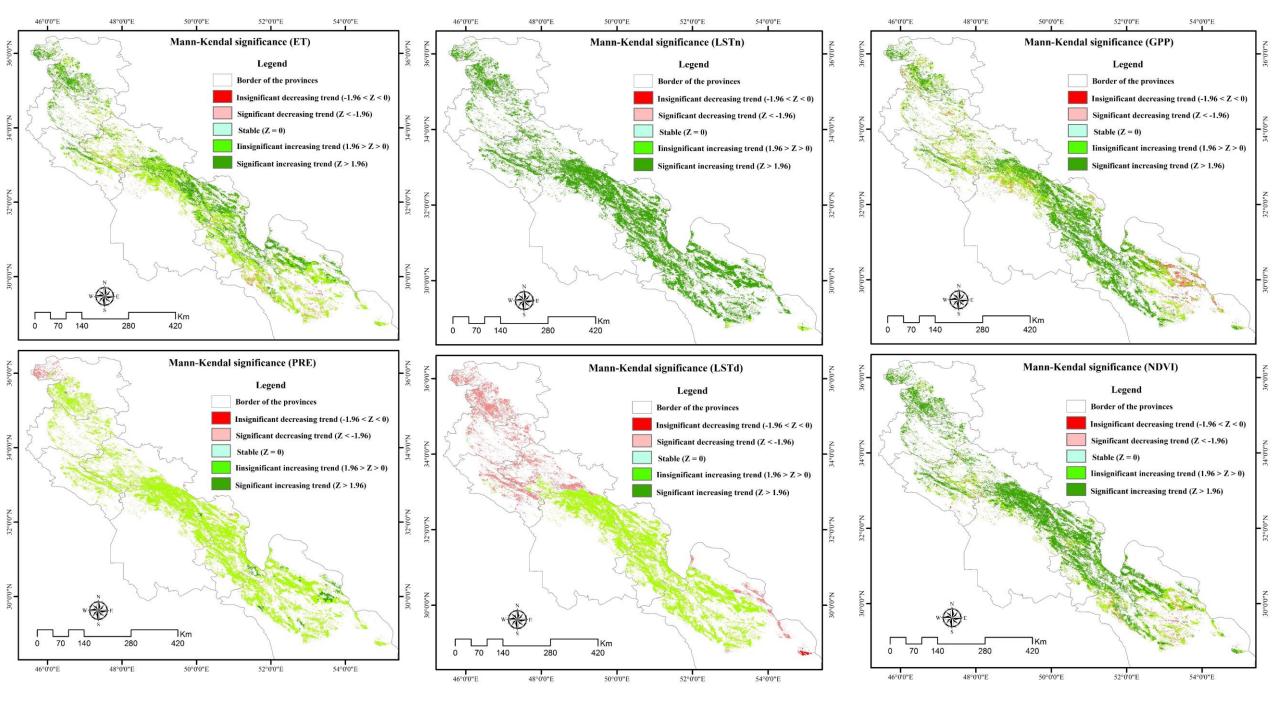
JNIVERSITY OF AGRICULTURE IN KRAKOW

Vahid Nasiri

Postdoctoral researcher. Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow.

Vahid.Nasiri@urk.edu.pl

Trends during 2001-2024 in NDVI and GPP


	Increasing tre	Increasing trend (greening)		rend (browning)
	Area (ha)	% of ZF	Area (ha)	% of ZF
NDVI	4,827,026.57	94.33	289,868.02	5.66
GPP	4,552,754.152	88.97	564,140.44	11.03

Trends during 2001-2024 in evapotranspiration (ET) and precipitation (prec)

	Increasing tren	d (greening)	Decreasing trend (browni	
	Area (ha)	% of ZF	Area (ha)	% of ZF
ET	4,828,609.59	98.53	288,285.00	1.43
prec	4,993,071.35	97.58	123.823.24	2.41

Trends during 2001-2024 in day time LST (LST-D) and night time LST (LST-N)

	Increasing tren	Increasing trend (greening)		rend (browning)
	Area (ha)	% of ZF	Area (ha)	% of ZF
LST-D	3,577,607.19	69.92	1,539,287.41	30.08
LST-N	5,116,894.60	100	-	-

