THRESHOLD AND TREND-BASED VEGETATION CHANGE MONITORING ALGORITHM BASED ON THE INTER-ANNUAL MULTI-TEMPORAL NORMALIZED DIFFERENCE MOISTURE INDEX SERIES: A CASE STUDY OF THE TATRA MOUNTAINS

Adrian Ochtyra, Adriana Marcinkowska-Ochtyra, Krzysztof Gryguc, Edwin Raczko

University of Warsaw, Faculty of Geography and Regional Studies, Department of Geoinformatics, Cartography and Remote Sensing

EnviLink – międzynarodowa platforma wymiany doświadczeń młodych naukowców w badaniach przyrodniczych

Instytut Badawczy Leśnictwa, Warszawa, 15-17 May 2024

MOTIVATION

- Vegetation plays a significant role in climate regulation processes
- Changes of vegetation occurs on different spatial scales
- Temporal-scale changes are abrupt and gradual, there are also seasonal changes
- Many algorithms have been developed
- Satellite imagery provides opportunities to monitor such changes e.g. Landsat imagery (acquired within 16 days interval from one satellite)

Disturbance agents: A - windthrow (https://portaltatrzanski.pl); B - bark beetle (own picture); C - landslide (http://www.poznajtatry.pl); D - construction (https://www.slovakia.com)

AIM OF THE STUDY

- Develop a simple and flexible algorithm for the monitoring of abrupt and gradual changes in the vegetation using annual Landsat time series based on thresholding and regression
- Threshold- and Trend-based Vegetation Change Monitoring Algorithm
 (TVCMA)
- Validate the effectiveness of the selected vegetation indices for the monitoring of vegetation disturbances based on satellite data

STUDY AREA

Landsat 8 courtesy of the USGS, (A) bark beetle outbreak (own photo) (B) bora wind (photo by Falťan et al., 2020)

(TPN - Tatrzański Park Narodowy, TANAP - Tatranský Národný Park)

METHODS

INITIAL SATELLITE DATA PREPARATION

Example of cloud free image, Google Earth Engine

scanning errors

missing scan lines

clouds and shadows

topographic shadows

TESTED VARIABLES

Selected vegetation indices (B in formulas indicates spectral band of Landsat sensors).

Index name	Calculation on Landsat data	Reference
Enhanced vegetation index	$EVI = \frac{NIR - RED}{NIR + 6 * RED - 7, 5 * BLUE + 1}$	Huete et al., 2002
Green normalized difference vegetation index	$GNDVI = \frac{NIR - GREEN}{NIR + GREEN}$	Gitelson and Merzlyak, 1998
Moisture stress index	$MSI = \frac{SWIR1}{NIR}$	Hunt and Rock, 1989
Normalized difference moisture index	$NDMI = \frac{SWIR1 - NIR}{SWIR1 + NIR}$	Hardisky and Klemas, 1983
Normalized difference vegetation index	$NDVI = \frac{NIR - RED}{NIR + RED}$	Rouse et al., 1973
Normalized pigment chlorophyll index	$NPCI = \frac{RED - BLUE}{RED + BLUE}$	Peñuelas et al., 1993
Optimized soil adjusted vegetation index	$OSAVI = \frac{1,5 (NIR - RED)}{NIR + GREEN + 0,16}$	Rondeaux et al., 1996
Plant senescence reflectance index	$PSRI = \frac{RED - BLUE}{NIR}$	Merzlyak et al., 1999
Simple ratio	$SR = \frac{NIR}{RED}$	Birth and McVey, 1968
Wide dynamic range vegetation index	$WDRVI = \frac{0, 2 * NIR - RED}{0, 2 * NIR + RED}$	Gitelson, 2004

Tasseled Cap transformation products: Brightness, Greenness and Wetness (Kauth, Thomas, 1976).

TVCMA CONDITIONS

Conditions:

- 1. If the difference between the variable value on the date currently being analyzed (x_{t-3}) and the preceding date (x_{t-2}) exceeds the threshold value is indicated as a potential vegetation disturbance $(x_{t-3} x_{t-2})$.
- 2. If the difference between the variable value on the date following the date of analysis (\mathbf{x}_{t-4}) and the preceding date (\mathbf{x}_{t-2}) exceeds the threshold value is indicated as a potential vegetation disturbance $(\mathbf{x}_{t-4} \mathbf{x}_{t-2})$.
- 3. If the difference between the variable value on the date of analysis (x_{t-3}) and the date preceding the said date by two dates (x_{t-1}) exceeds the threshold value is indicated as a potential change (x_{t-3}-x_{t-1}).

MULTI-TEMPORAL ANALYSIS OF SATELLITE DATA – REGRESSION

Example trends for two data series. The trends show long-term changes in the vegetation index values.

PRODUCTS OF TVCMA (IMAGES)

- **direction and magnitude** of change expressed by the sign and value of the angle between the modeled trend line and the x-axis.
- **Spearman's correlation coefficients** for each pixel the goodness of fit of the modeled trend line that represents the rate of change.
- p-values for Spearman's correlation tests statistical significance of the given correlation coefficients.
- information on the number of disturbances that occurred in a given pixel during the analysis period.
- spatial **location and time** of the disturbance.

REFERENCE DATA PREPARATION

id	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019 2	020 2	2021	2022
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0

ACCURACY ASSESSMENT

- 100 randomly selected pixels
- 38 years in time series

F

- 3800 validation observations
- 69 observed disturbance events

	Reference	Algorithm	Accuracy
^o - true positives	1	1	\odot
^D - false positives	0	1	(; ()
N - true negatives	0	0	\odot
N - false negatives	1	0	

Results for NDMI values

L	Set	ТР	F	FP	ſ	TN	Γ	FN	Accuracy	Precision	Sensitivity	Specificity	F1_Score
2	Threshold0_01	59		528		3203		10	0,858421	0,100511	0,855072	0,858483	0,179878
3	Threshold0_02	56		376		3355		13	0,897632	0,12963	0,811594	0,899223	0,223553
Ļ	Threshold0_03	53		278		3453		16	0,922632	0,160121	0,768116	0,925489	0,265
5	Threshold0_04	52		197		3534		17	0,943684	0,208835	0,753623	0,947199	0,327044
5	Threshold0_05	48		138		3593		21	0,958158	0,258065	0,695652	0,963013	0,376471
7	Threshold0_06	47		100		3631		22	0,967895	0,319728	0,681159	0,973198	0,435185
3	Threshold0_07	45		63		3668		24	0,977105	0,416667	0,652174	0,983114	0,508475
)	Threshold0_08	39		46		3685		30	0,98	0,458824	0,565217	0,987671	0,506494
0	Threshold0_09	37		35		3696		32	0,982368	0,513889	0,536232	0,990619	0,524823
1	Threshold0_1	37		28		3703		32	0,984211	0,569231	0,536232	0,992495	0,552239
2	Threshold0_11	37		22		3709		32	0,985789	0,627119	0,536232	0,994103	0,578125
3	Threshold0_12	33		15		3716		36	0,986579	0,6875	0,478261	0,99598	0,564103
4	Threshold0_13	29		10		3721		40	0,986842	0,74359	0,42029	0,99732	0,537037
5	Threshold0_14	27		6		3725		42	0,987368	0,818182	0,391304	0,998392	0,529412
6	Threshold0_15	26		6		3725		43	0,987105	0,8125	0,376812	0,998392	0,514851
7	Threshold0_16	24		5		3726		45	0,986842	0,827586	0,347826	0,99866	0,489796
8	Threshold0_17	22		4		3727		47	0,986579	0,846154	0,318841	0,998928	0,463158
9	Threshold0_18	17		3		3728		52	0,985526	0,85	0,246377	0,999196	0,382022
0	Threshold0_19	17		3		3728		52	0,985526	0,85	0,246377	0,999196	0,382022
1	Threshold0_2	13		3		3728		56	0,984474	0,8125	0,188406	0,999196	0,305882
2	Thurshald 0.01			2		2720		50	0.004011	0.046454	0.15040	0.000464	0.000000

Year of latest detected disturbance events

Wind

2003

2005

0.5 km

DISTURBANCE MAPPING

RGB composition created by using the resulting TVCMA images:

- N number of the disturbances for a given pixel,
- MD magnitude and direction of changes,
- C Spearman's correlation coefficient.

SUMMARY & CONCLUSIONS

- Using TVCMA we obtained 38 images that mapped the spatial distribution of disturbed areas in Tatra Mountains from 1985 to 2022 (spatial resolution 30 meters).
- The detected disturbances were primarily related to windthrow and bark beetle outbreaks.
- By using the thresholding approach, the algorithm easily recognizes **abrupt changes** such as windthrows because of their sudden nature, and these typically appear as a rapid drop in the spectral indices values.

- For more **gradual changes**, such as the spread of bark beetle infestations, the measured differences are less pronounced, thus resulting in a slightly lower detection accuracy.
- A regression approach allows to map not only the disturbed areas, but also the **recovery** process.
- The analysis can be **reproduced** for other terrains by fitting the threshold value to the characteristics of the site-specific.

THANK YOU

Do you have any questions? adrian.ochtyra@uw.edu.pl

Remote Sensing of Environment 249 (2020) 112026

Threshold- and trend-based vegetation change monitoring algorithm based on the inter-annual multi-temporal normalized difference moisture index series: A case study of the Tatra Mountains

Adrian Ochtyra*, Adriana Marcinkowska-Ochtyra, Edwin Raczko

University of Warsaw, Faculty of Geography and Regional Studies, Chair of Geomatics and Information Systems, Department of Geoinformatics, Cartography and Remote Sensing, 00-927 Warsaw, Poland

Erasmus+

E-TRAINEE

2 of an open E-learning course on Time Series Analysis in Remote Sensing for Understanding Human-Environment Interactions (E-TRAINEE,