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Abstract

This study analyzed satellite data from 2000 to 2022 in the Tian Shan ecoregions of northwestern China to investi-
gate relationships between climate, environment, soil conditions, and human activities on constantly changing veg-
etation fluctuations. The NDVI index outperformed EVI over the period, with peak values of 0.56 and 0.33, respec-
tively. NDVI trends indicated a higher slope of 5.15 compared to 4.91 for EVI. Analysis showed that vegetation area 
had expanded over time, with the lowest coverage between 2000 and 2005, but then, it spread due to varying degree 
of human activities’ impacts from 0 to 63. Tests revealed significant negative correlations between soil moisture 
and EVI/NDVI indexes attributed to natural water phenomena causing vegetation stress. Positive correlations were 
found between EVI/NDVI with actual evapotranspiration and snow, while negative with wind speed and radiation. 
The study also found a positive correlation between NDVI and measures of human activity, indicating restoration 
efforts, project implementations, and soil management preventing erosion expanded vegetation. Overall, the study 
concluded that human activities had a greater influence than climate through water and soil preservation, resulting 
in more vegetation expansion over time. Indigenous resource concepts also significantly contributed to long-term 
preservation efforts evidently maintaining and strengthening vegetation in the ecoregions. These findings highlight 
the efficacy and resilience of human activity in overcoming climatic and environmental challenges. While human 
factors can potentially harm the environment and renewable resources, long-term planning and preservation efforts, 
as evident in the Tian Shan ecoregions, have successfully preserved and strengthened the vegetation.
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INTRODUCTION

Vegetation, defined as the proportion of land surface cov-
ered by plants, is influenced by climate change, the natu-
ral environment, and human activity (Jing et al. 2011). It 
is a crucial part of terrestrial ecosystems, playing a vital 
role in regulating the Earth’s carbon balance and climate 
system (Liu et al. 2018). The diversity of vegetation is sig-
nificantly affected by these factors (Nemani et al. 2003). 
Climate factors influence long-term vegetation growth 
patterns and the distribution of onshore vegetation, af-
fecting regional ecosystem services. Human activities, 
on the other hand, have altered vegetation’s geographical 
range and growth quality in shorter timeframes, signifi-
cantly impacting regional ecosystem services and func-
tions (Hu et al. 2019; Rull et al. 2011). Identifying the re-
lationship and significance of each parameter in relation 
to changes in land cover is essential (Liu et al. 2018; Shen 
et al. 2016). Modern remote sensing techniques are valu-
able for accurately monitoring global vegetation dynam-
ics, enhancing our understanding of biosphere processes 
and their interactions with Earth’s climate.

Climate factors are crucial for long-term vegetation 
growth trends, influencing onshore vegetation distribu-
tion and regional ecosystem services, while human activi-
ties have significantly altered vegetation’s geographical 
range and quality in shorter timeframes, impacting re-
gional ecosystem services (Hu et al. 2019; Rull et al. 2011). 
Identifying the relationships and significance of these pa-
rameters concerning land cover changes is essential (Liu 
et al. 2018; Shen et al. 2016). Modern remote sensing tech-
niques are valuable tools for accurately monitoring global 
vegetation dynamics, enhancing the understanding of 
biosphere processes and their climate interactions.

Various spectral indicators from satellite data, such 
as the NDVI, have been used to evaluate spatial patterns 
and trends of human activity and climate change impacts 
on vegetation and biomass, showing a close connection 
to vegetation activity (Tucker 1979). Researchers have 
conducted comprehensive studies on this relationship 
(Eastman et al. 2013; Sharma et al. 2022; Zhang et al. 
2013). Climatic variables like air temperature and pre-
cipitation are significant for vegetation indicators (Gao 
et al. 2022; Shang et al. 2022; Sun et al. 2021; Gao et al. 
2021), regulating vegetation growth (Wang et al. 2016; 
Braswell et al. 1997; Guo et al. 2021). For instance, Wang 
et al. (2016) used NDVI data to study vegetation phe-

nology in the Northern Hemisphere from 1982 to 2012, 
showing how vegetation in different ecological zones 
responds to climate change. Climate change affects veg-
etation growth periods, composition, and morphology 
(Liu and Lei 2015; Sun et al. 2015; Deng and Chen 2017), 
with precipitation and temperature being primary driv-
ers (Sun et al. 2021; Gao et al. 2022; Gao et al. 2021). 

Shang et al. (2022) identified these as key factors 
influencing NDVI changes in northwest China. Zhou et 
al. (2019) found a negative correlation between elevation 
and vegetation. Deng et al. (2020) noted that karst areas 
have high soil moisture, which decreases rapidly com-
pared to non-karst areas, impacting vegetation growth. 
Human activities also impact vegetation through defor-
estation, pollution, and habitat destruction, but can also 
preserve biodiversity through restoration and sustain-
able practices (Shi et al. 2021; Fyfe 2023; Meredith and 
Jens 2018). Thus, human impacts have both construc-
tive and destructive implications.

This research aims to analyze vegetation changes 
in the Tian Shan Ecoregions over the last 23 years using 
remote sensing data. It investigates the connections be-
tween vegetation dynamics and climate, soil character-
istics, surface features, and human activities, providing 
insights into terrestrial ecosystem responses to climate 
fluctuations. ArcGIS and coding techniques are utilized 
to predict the impacts of various biotic and abiotic fac-
tors on vegetation indexes.

Research significant

This study develops a  method of monitoring vegeta-
tion dynamics at the ecological scale of the Tian Shan 
ecoregions and also helps to predict the future of fragile 
ecosystems of rare plant and animal species in northwest 
China and Central Asia, which lies behind these changes, 
climate change scenarios and human-induced activities.

Material and methods

Xinjiang province, located in northwest China (Jiapaer 
et al. 2015), covers 1.66  million km², about one-sixth 
of China’s total area (Yu et al. 2020). It’s a fragile eco-
logical zone with 51.4% mountainous and 48.6% plains 
(Luo et al. 2019; Jiapaer et al. 2015). The region fea-
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tures diverse landforms, including the Altai, Kunlun, 
A-erh-chin, and Tian Shan mountains, which enclose 
the Junggar and Tarim Basins (Zhao et al. 2022; Luo 
et al. 2019). Forests and grasslands make up 31.29% 
of the area, with grasslands predominating (Zhuang et 
al. 2020). The northern region receives more rainfall 
(100–500  mm) and has cooler temperatures (4–8°C), 
while the south is drier (20–100  mm) and warmer 
(10–13°C) (Cao and Gao 2022).

Table 1. 17 ecoregions of Xinjiang province. The area of all 
three Tian Shan ecoregions is well calculated.

Ecoregions Area, km2 Percent
Alashan Plateau semi-desert 67 16.498
Altai alpine meadow and tundra   90,434   2.212
Altai montane forest and forest steppe 142,875   3.495
Altai steppe and semi-desert   83,192   2.035
Central Tibetan Plateau alpine steppe 629,190 15.393
Emin Valley steppe   65,135   1.594
Junggar Basin semi-desert 304,938   7.460
Karakoram-West Tibetan Plateau 
alpine steppe 143,265   3.505

North Tibetan Plateau-Kunlun 
Mountains alpine desert 374,494   9.162

Pamir alpine desert and tundra 118,072   2.889
Qaidam Basin semi-desert 192,147   4.701
Rock and Ice   34,830   0.852
Taklimakan desert 742,657 18.169
Tarim Basin deciduous forests and 
steppe   54,533   1.334

Tian Shan foothill arid steppe 129,231   3.162
Tian Shan montane conifer forests   27,568   0.674
Tian Shan montane steppe and 
meadows 280,611   6.865

Ecoregions, distinct areas with consistent ecosys-
tems, are crucial for environmental assessment (Lov-
land and Merchant 2004). The Ecoregion data for 
Xinjiang come from https://ecoregions.appspot.com; 
https://www.oneearth.org/, revealing 17 ecoregions and 
5 biomes, with the Taklimakan desert and Tian Shan 
montane conifer forests being the largest and smallest, 
respectively. The current research focuses on the Tian 
Shan ecoregions (Fig. 1), divided into three: Tian Shan 
foothill arid steppe, Tian Shan montane conifer for-

ests, and Tian Shan montane steppe and meadows. Our 
analysis primarily revolves around the examination of 
primary data related to these specific ecoregions.

Figure 1. Geographical location of the Tian Shan ecoregions 
by calculating the area of each three ecoregions in square 
kilometers and a percentage composed of the whole Xinjiang 
province

The Tian Shan foothill arid steppe (WWF ID: 
PA0818) spans the northern and western Tian Shan, fea-
turing semi-arid and humid climates with diverse veg-
etation and wildlife (Kottek et al. 2006; https://ecore-
gions.appspot.com; https://www.worldwildlife.org/). The 
Tian Shan montane conifer forests (WWF ID: PA0521) 
cover north-facing slopes between 1,500 and 2,700 me-
ters, dominated by Asian spruce and mixed with other 
trees at different elevations (https://ecoregions.appspot.
com; https://www.worldwildlife.org). The Tian Shan 
montane steppe and meadows (WWF ID: PA1019) 
stretch along the Tian Shan ridge, featuring grasslands 
at various altitudes and acting as a barrier between the 
Tarim Basin, Taklimakan Desert, Junggar Basin, and 
Kazakh Shield. This ecoregion supports diverse species 
due to its large size and range of altitudes (Kottek et al. 
2006; https://www.worldwildlife.org).



Folia Forestalia Polonica, Series A – Forestry, 2024, Vol. 66 (3), 155–182

Seyed Omid Reza Shobairi, Sun Lingxiao, Zhang Haiyan, Li Chunlan, He Jing, Behnam Asghari Beirami158

Table 2. Main sources with the satellite product specifications
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Insignia Product Parameter Temporal coverage Description Website details 

 

MYD13A1.0
61 

NDVI 16 Daily Normalized 
Difference 
Vegetation 

Index 

https://developers.google.com/earth-
engine/datasets/catalog/MODIS_061_

MYD13A1 

 

ERA5-Land 
 
 

Temperature Daily 
 

ECMWF 
Climate 

Reanalysis 
 

https://developers.google.com/earth-
engine/datasets/catalog/ECMWF_ER
A5_LAND_DAILY_AGGR#bands Evaporation 

Runoff 

 

CHIRPS Precipitation Daily Hazards 
Group 

InfraRed 

https://developers.google.com/earth-
engine/datasets/catalog/UCSB-

CHG_CHIRPS_DAILY 

Product Band 
Image 

collection 
Value 

Units Time and dataset availability Min Max 
MYD13
A1.061 

NDVI MODIS/061/
MYD13A1 

-2000 10000 -- 2002-07-04T00:00:00Z–2023-06-
18T00:00:00 

ERA5-
Land 

temperature_
2m 

ECMWF/ER
A5_LAND/D

AI 
LY_AGGR 

-- -- K 1950-01-02T00:00:00Z–2023-07-
26T00:00:00 

total_evapora
tion_sum 

-- -- m of water 
equivalent 

runoff_sum -- -- m 
CHIRPS Precipitation CSB-

CHG/CHIRP
S/DAILY 

0* 1444.34* mm/d 1981-01-01T00:00:00Z–2023-06-
30T00:00:00 

Satellite/
model 

Product 
name Data name Unit Spatial 

resolution 
Temporal 
resolution Time extent 

Modis/T
erra 

MOD11A1.0
61 Terra 

Land Surface 
Temperature 

and 
Emissivity 

Daily Global 
1 km 

LST_Day_1k
m 
 

Kevin 1000 
meters Daily  

2000-02-24 

Modis/T
erra 

Vegetation 
Indices 

NDVI 
EVI - 500 

meters Daily 2000-02-18 

FLDAS FEWS NET 

Soil Moisture 
m^3 
m-3 

10 km Monthly 

1/1/1982 Shortwave 
Radiation 

Flux 
w m-2 -- -- 

TERRA 
Climate 

University of 
IDAHO 

Palmer 
Drought Index 

nan -- -- 
1/1/1958 

Wind Speed m/s 4 km Monthly 
Satellite/
model 

Product 
name 

Date name Unit Spatial 
resolution 

Temporal 
coverage 

Time extent 

MODIS MODIS 
Land Cover 

Type 
(LC_Type2 
Class Table) 

MCD12Q1.06
1 

- 500 m Yearly 2001-01-01T00:00:00Z–2022-01-
01T00:00:00 

ee.ImageCollection("MODIS/061/MC
D12Q1")  
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The calculated satellite data are based on modeling 
this study. With the help of the Google Earth Engine 
(GEE) platform and its raster file catalogs, calculations 
went forward. MODIS/061/MYD13A1-NDVI 16 daily 
(2000 to 2023) with a spatial resolution of 250-m Global 
scale and drivers datasets, such as air temperature at 
2 m, total precipitation, LST, actual evaporation, run-
off, soil moisture, wind speed, palmer drought severity 
index (PDSI), downward surface shortwave radiation 
(DSR), and snow water equivalent, were extracted form 
ERA5-Land, CHIRPS, for a  23-year period. Data are 
available through https://code.earthengine.google.com. 
MODIS LULC data (MCD12Q1.061) were also exca-
vated to track human activities and calculate the areas 
of vegetation and land. The main sources and character-
istics of the collected data are listed in Table 2. 

Raster calculations of plant indicators and climatic and 
environmental parameters 

Average value of the vegetation indices and their chang-
es attributed to climate and environment parameters 
were examined based on annual, pixel-wise trends in 
NDVI, EVI, LST daytime, total precipitation, air tem-
perature at 2 m, actual evapotranspiration, soil moisture 
at 10 cm, wind speed, snow water equivalent, and DSR 
time series.

To the tribute that first the monthly average, then 
the annual average, and finally the average for all the 
years of the period in question from 2000 to 2022 were 
carefully analyzed and visualized. NDVI, EVI, and 
LST equations are in the following order (Cheng and 
Liang 2017):

	 	 (1)

	 	 (2)

where: 
Blue, RED, NIR 	– spectral bands, 
L  	 – corrects for soil back ground, 
C1, C2  	 – �coefficients which are related to aer-

osol scattering in the atmosphere. 

LST is also calculated according to the following 
equation (Ehsanul et al. 2021): 

	 	 (3)

Total precipitation represents the combined amount 
of rain and snow that descends onto the Earth’s surface. 
Monthly precipitation is calculated by adding up the 
daily precipitation values for each month. To determine 
the monthly average, the total precipitation amounts 
for all months are summed and divided by the number 
of months considered within the chosen period of 22 
years. The yearly total is obtained by summing the aver-
ages of individual months.

2m Temperature refers to the air temperature meas-
ured at a height of 2 meters above the Earth’s surface. 
The 2m Temperature Anomaly indicates the deviation 
of the forecasted temperature for the current day from 
the long-term average temperature for the same day of 
the year. This parameter is measured in Kelvin (K). To 
convert Kelvin to Celsius, the following conversion re-
lationship is utilized: 

	 C = K – 273.15	 (4)

While the size of the degree is the same in Kelvin 
and Celsius, the two scales are not equal at any point: 
A Celsius temperature is always higher than a Kelvin 
temperature.

Actual Evapotranspiration (ETa) is the quantity of 
water that is removed from a surface due to the process-
es of evaporation and transpiration and is measured in 
millimeters (mm). Our remote sensing data have been 
gradually used to estimate actual evapotranspiration.

	 ET = kc.ET0	 (5)

where: 
ETc 	 – �actual evapotranspiration, 
Kc	 – �crop coefficient, 
ET0 	 – �reference evapotranspiration.

Surface soil moisture refers to the water content 
present in the top 10  cm of soil. A  reading of 0 in-
dicates that the soil moisture has reached the wilting 
point, indicating extreme dryness. Conversely, a read-
ing of 1 signifies that the soil moisture has reached 
saturation, indicating a state of being highly saturated 
with water.

It was taken advantage of strong experimental vari-
ables such as runoff, snow water equivalent, and wind 
speed at 10 m, palmer drought, and at the end downward 
shortwave radiation (DSR) designates solar radiation 
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with a wavelength from 300 to 4000 nm received at the 
Earth’s surface. It is the driving force of many global 
ecological, hydrological, biophysical, and biochemical 
processes and is a key variable in modeling weather and 
climate systems.

A  time series model is a collection of data points 
arranged chronologically, with time serving as the inde-
pendent variable. These models are employed to exam-
ine and predict future trends. When dealing with time 
series data, we analyze the patterns and variations over 
time, allowing us to gain insights into the concept of 
most time series and observe yearly fluctuations in our 
research.

The scatter plot (y = mx + b) was also generalized 
to analyze the correlation of two vegetation variables 
NDVI and EVI. We already checked the normality of 
the distribution of data related to plant indicators before 
the Shapiro–Wilk test.

Relationships between NDVI and EVI were dis-
played as dependent variables, with other climatic and 
environmental parameters and human drivers using 3D 
scatter plots. Indeed, 3D scatter plots are utilized to vis-
ually represent data points across three axes, aiming to 
illustrate the correlation between three variables. Each 
entry in the dataset is depicted as a marker, positioned 
based on its corresponding values in the columns as-
signed to the X, Y, and Z axes.

In order to evaluate the long-term changes in plant 
and climatic and environmental parameters above, in 
addition to comparing their mean values, we used linear 
regression models. In fact, the use of the slope model is 
a very valuable way to investigate the annual and total 
period anomalies of the named parameters. Hence, the 
linear regression slope (anomaly) was computed as fol-
lows: 

	 	 (6)

where: 
slope 	– �the trend of vegetation dynamics or climate and 

environmental variables, 
n 	 – �the number of years in the study period, 
i 	 – �the year and NDVIi in the ith year.

The positive slope counts increasing trends, while 
negative slope values display declining (decreasing) 
trends (Piao et al. 2011).

Correlation coefficient formula is given and ex-
plained here for all the variables: 

	 	 (7)

where: 
r 	– defines the correlation coefficient, 
y 	– �assumed as responsive variables of NDVI and EVI, 
x 	– �considers independent experimental variables (cli-

mate, environment, and human drivers) of this re-
search. 

To assess the relationships between the mentioned 
variables (Mihretab et al. 2020), the Pearson correlation 
coefficient (r) and its associated P-value were employed. 
Specifically, the correlation coefficient (r) was used to 
gauge the strength of the connections between NDVI, 
EVI, and climate parameters in an environmental con-
text. A significance level of 95% was chosen to deter-
mine the statistical significance of the correlations. The 
correlation coefficient (r) indicates the magnitude of the 
linear relationship, while the P-value represents the cor-
responding probability level. A positive correlation and 
a p-value below 0.05 indicate a statistically significant 
relationship between the two variables.

Undoubtedly, the correlation matrix is capable of 
displaying the correlation coefficient between the afore-
mentioned variables. This matrix reveals the correlation 
values, which quantify the extent of the linear relation-
ship between each pair of variables. These correlation 
values can range from –1 to +1. When the two variables 
tend to increase and decrease together, the correlation 
value is positive.

Next, as the scenario was determined which pa-
rameter had the most impact and how the variables in-
teracted, the area values and percentage of anomalies 
and changes of the most important NDVI vegetation 
index were calculated, modeled, and visualized for the 
first period (2000) and the end of the period in question 
(2022), and we carefully extracted all the fluctuations of 
this index, which recounts the process of resuscitation, 
stillness, and degradation of vegetation with advanced 
coding. Benefiting from the data of MODIS LULC was 
also applied to track human activities and calculate the 
areas of various types of vegetation, forest classifica-
tion, shrubs, pastures, agricultural lands, and residen-
tial areas in 2001 and 2021.
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Raster calculation of harmonized global Night Time 
Light data and modeling human drivers

In the research study, a  global Night Time Light 
(NTL) dataset was created by merging and standard-
izing NTL observations from the DMSP and simu-
lated DMSP-like NTL observations from the VIIRS 
data (https://gee-community-catalog.org/). The data-
set, covering a specific area of interest includes DMSP 
NTL time-series data from 2000 to 2020, revealing 
consistent temporal patterns valuable for studying hu-
man activities like electricity consumption, land-use 
changes, urban expansion, and industrialization dy-
namics. The dataset comprises temporally calibrated 
DMSP-OLS NTL data from 1992 to 2013 and convert-
ed NTL data from VIIRS spanning 2014 to 2020, with 
a  spatial resolution of approximately 30 arc-seconds. 

The provided code demonstrates how to access and 
utilize the dataset: https://code.earthengine.google.
com/?scriptPath=users/sat-io/awesome-gee-catalog-
examples:global-utilities-assets-amenities/HARMO-
NIZED-GLOBAL-NTL

Additionally, the study conducted an analysis with-
in the Tian Shan Ecoregion from 2000 to 2020, calculat-
ing the Compounded Night Light Index (CNLI) that in-
corporates parameters reflecting night light brightness 
and the extent of lit urban areas, offering insights into 
urban population dynamics, economic indicators, and 
urban growth simultaneously (Wei et al. 2014). To com-
pute the CNLI for our specific study area, we utilized 
the following formula:

	 CNLI Index = I × S	 (8)

A

B

C

D

Figure 2. Geographical topography (A), elevation (B), situation (C), and area (D) of Tian Shan ecoregions during the statistical 
period of 2000–2022
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where: 
I 	 – �the average night light brightness of all lit pixels 

in a region. 

It illustrates as follows:

	 	 (9)

In the formula provided, we have several variables 
and parameters. The variable DNi represents the DN 
value associated with the ith gray level. The variable ni 
represents the count of illuminated pixels correspond-
ing to that specific gray level. The parameter P denotes 
the optimal threshold used to identify the illuminated 
urban areas within the DMSP images. Additionally, 
DNM represents the maximum DN value observed, 
while NL represents the count of illuminated pixels with 
DN values ranging between P and DNM. Finally, the 
parameter S represents the proportion of illuminated 
urban areas relative to the total area of a given region. 
The mathematical representation of S can be expressed 
as follows: 

	 	 (10)

In the context provided, we have two variables: Ar-
eaN represents the area occupied by illuminated urban 
areas within a specific region and Area represents the 
total area of that region.

Results and discussion

In this study, we analyzed the interactions between plant 
indicators, climatic and environmental factors, and hu-
man drivers over 23 years in the Tian Shan ecoregions. 
These regions, ranging from 185 to 7418 meters above 
sea level, are categorized into mountain steppe/pas-
tures, mountain coniferous forests, and dry mountain 
foothills. The largest area is the mountain steppes/pas-
tures (64%; 280,311 km²), while the smallest are is the 
mountain coniferous forests (6%; 27,568 km²) (Fig. 2).

Response variable; vegetation index
NDVI and EVI

The vegetation condition in the Tian Shan ecoregions 
from 2000 to 2022 was assessed using NDVI and EVI 
indicators. NDVI covered a  wider area and exhibited 
a better trend than EVI, with peak values of 0.56 and 

0.33, respectively, and a  higher slope trend of 5.15% 
(Fig.  3). Regions with lower altitudes, particularly in 
the west, northwest, and central areas, showed higher 
and better vegetation trends compared to southern re-
gions, highlighting the impact of altitude on vegetation 
(Fig.  4). The study indicates that lower altitudes cor-
relate with higher and stronger vegetation indicators 
(NDVI and EVI) (Figure 3).

Figure 3. Trend of vegetation indices of Tian Shan 
ecoregions during the statistical period 2000–2022

Experimental independent variable: climate and 
environment parameters 

Temporal and spatial patterns of LST day time (kelvin), 
total precipitation (mm), air temperature at 2 m (kelvin), 
actual evapotranspiration (mm), soil moisture at 10 cm 
(mm), downward shortwave radiation (DSR), snow wa-
ter equivalent (SWE), and wind speed 
The Tian Shan ecoregion is highly influenced by exter-
nal drivers like climate parameters owing to its unique 
geographic location and topography. This study delves 
into analyzing the climate parameters within the Tian 
Shan ecological zone from 2000 to 2022 (based on 
Fig. 5–12). The findings indicate significant variations 
in precipitation levels over the 23-year period, with 2016 
recording the highest precipitation exceeding 35  cm. 
On average, the region receives more than 154 mm of 
rainfall, with distinct patterns observed across different 
parts, particularly in the western, central, northeastern, 
and southwestern regions (Fig. 5A). The discrepancies 
in precipitation levels are largely attributed to the eleva-
tion differences in these areas (Fig. 5B). 

The survey of the Tian Shan indigenous region’s 
average snow-equivalent water (SWE) reveals that the 
23-year average SWE ranges from 0.008 to 10061.1 mm 
(Fig.  6A). The anomalous slope value falls between 
0.022 and -0.085 (Fig.  6B). Over the considered peri-
od, this phenomenon has shown an incremental trend, 
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A

B

C

D

Figure 4. Temporal trend of mean NDVI (A), NDVI slop and anomaly (B), mean EVI (C), and EVI slop and anomaly (D) in 
Tian Shan ecoregions during the period of 2000–2022

A

C

B

Figure 5. Changes in the total precipitation slop/anomaly(A), changes in the total precipitation mean (B), and changes in 
the average precipitation of the Tian Shan ecological zone during the statistical period 2000–2022 (column numbers are in 
centimeters) (C)
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with the minimum value recorded in 2008 and a notice-
able increase from 2011 onward (Fig. 6C). Snow plays 
a crucial role in the cold regions’ ecosystem, connect-
ing wildlife, vegetation, and soil moisture. SWE quan-
tifies the water stored as snow on the Earth’s surface 
and holds significant importance for water, energy, and 
geochemical cycles. This relationship between SWE 
and vegetation will be further explored in the Tian Shan 
ecoregion.

Soil moisture plays a  significant role in vegeta-
tion growth across different regions. In the Tian Shan 
ecoregions, the average soil moisture ranges from 1 to 
0.157 (Fig. 7A), with the highest levels observed in the 
western and northern areas. The anomaly value of soil 
moisture slope varies from 3.2 to –3.3 in this region 
(Fig. 7B). A soil moisture value of 0 indicates extreme 
dryness (wilting point), while a  value of 1 represents 
high saturation with water. Optimal conditions for plant 
growth occur at a soil moisture value of 0.54, while val-
ues below 0.2 and above 0.8 indicate drought and exces-
sive moisture stress, respectively. Further analysis will 
reveal a  negative relationship between soil moisture 
and vegetation indices such as NDVI and EVI. High 
moisture content (equal to or greater than 0.8) results 
from snow melting, surface currents, and lakes expos-
es vegetation to additional moisture stress, leading to 
vegetation decline. Additionally, high soil moisture in 
cold seasons can cause soil texture freezing, resulting in 
problems for the plant root system and vegetation loss. 
In the southern regions, the slope value for soil moisture 
reaches its lowest point. The study of average soil mois-
ture changes indicates a decreasing trend from 2015 on-
ward, significantly impacting vegetation growth in the 
Tian Shan ecoregions (Fig. 7C).

Land surface temperature (LST) is a  critical cli-
mate parameter that influences vegetation growth and 
is impacted by vegetation itself. Regions with dense 
vegetation maintain a surface temperature below 35°C, 
preventing excessive heat accumulation. Extreme tem-
perature deviations, whether too low or too high, nega-
tively affect vegetation growth and disrupt the plant’s 
phenological cycle. The study of Tian Shan’s land sur-
face temperature over a 23-year period reveals a range 
between 250.48 and 303.59 Kelvin (Fig. 8A). The high-
est average temperatures are observed in the northern 
and central regions. The abnormal slope value indicates 
a  consistent average temperature across all areas of 

Tian Shan, varying from 1.25 to –1.17 Kelvin (Fig. 8B). 
There is a minimal change in the trend of this variable 
throughout the statistical period, except for a significant 
increase in 2022 compared to previous years (Fig. 8C).

Temperature, along with sunlight availability and 
water supply, plays a  crucial role in shaping global 
plant growth patterns, influencing the suitability of 
land for forests, grasslands, or deserts. This relation-
ship is exemplified in the Tian Shan ecoregions, where 
the connection between 2-meter ground temperature 
and vegetation cover is scrutinized. The 23-year aver-
age temperatures in these regions reveal higher values 
in the northern, northeastern, and western areas, rang-
ing from 259.03 to 285.4 Kelvin (Fig. 9A). Interestingly, 
the average anomalous slope remains relatively stable 
across the region except for a  significant temperature 
drop in 2021, indicating consistent patterns over the 
years (Fig. 9B and C). This analysis highlights the intri-
cate link between temperature and vegetation cover in 
the Tian Shan ecoregions, emphasizing the importance 
of temperature in shaping terrestrial ecosystems.

Actual Evapotranspiration (ETa) refers to the 
amount of water lost from a  surface due to evapora-
tion and transpiration. This measurement is expressed 
in millimeters and provides an estimate of the water 
requirement for actively growing plants. When vegeta-
tion is present, the surface holds more water, leading to 
higher water loss in the atmosphere, while wastelands 
experience more heat and stronger winds, resulting in 
less water to evaporate. The Tian Shan ecoregions have 
varying levels of ETa, with the central regions experi-
encing the highest amounts. This parameter has been 
decreasing from 2016 to 2021, with the anomaly slope 
being uniform for central, northern, and western re-
gions, but the lowest values have been reported for the 
southwestern and eastern regions.

Trees are affected by winds, which impact tran-
spiration, growth rate, and tree shape. Wind increases 
transpiration and water loss (Clark et al. 2000). Trees 
can also reduce wind speed. In the Tian Shan ecore-
gions, the southwest and west regions have the lowest 
average wind speed, while the southeast and east re-
gions have the highest (Fig.  11A). The slope of wind 
speed changes is consistent throughout the area, con-
sidering the topography (Fig. 11B). The highest average 
wind speed was recorded in 2010, and the lowest was in 
2018 (Fig. 11C).
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A
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B

Figure 6. Changes in the snow-equivalent water mean (A), changes in the snow-equivalent water slop/anomaly (B), and average 
snowmelt changes in the Tian Shan ecological zone during the statistical period 2000–2022 (C)

A

C

B

Figure 7. Changes in the soil moisture at 10 cm slop/anomaly (A), changes in the soil moisture at 10 cm mean (B), and changes 
in the average soil moisture content of Tian Shan area during the statistical period 2000–2022(C)
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A

C
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Figure 8. Changes in the LST daily time mean (A), changes in the LST daily time slop/anomaly (B), and changes in the average 
land surface temperature of the Tian Shan ecological zone during the statistical period 2000–2022 (C)

A

C

B

Figure 9. Changes in the air temperature at 2 m mean (A), changes in the air temperature at 2 m slop/anomaly (B), and changes 
in the average air temperature of the Tian Shan ecological zone during the statistical period 2000–2022 (C)



Folia Forestalia Polonica, Series A – Forestry, 2024, Vol. 66 (3), 155–182

Monitoring the temporal-spatial changes of vegetation cover and drivers in Tian Shan ecoregions, China 167

	 DMn = 
S

√–N
	 (1)

A

C

B

Figure 10. Changes in the actual evapotranspiration mean (A), changes in the actual evapotranspiration slop/anomaly (B), and 
changes in the mean actual evapotranspiration of Tian Shan ecoregion area during the statistical period 2000–2022 (C)

A

C

B

Figure 11. Changes in the wind speed mean (A), changes in the wind speed slop/anomaly (B), and changes in the average wind 
speed of the Tian Shan ecoregions during the statistical period of 2000–2022 (C)
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Shortwave radiation is crucial for evaporation, 
transpiration, and photosynthesis in agricultural sys-
tems. In the Tian Shan ecoregion, the central and south-
west areas receive higher levels of downward shortwave 
radiation, while the northern and northwest regions re-
ceive comparatively lower levels (Fig. 12A). Patterns of 
slope and anomalies in downward shortwave radiation 
are observed in all ecoregions (Fig.  12B). From 2006 
to 2009, the highest amount of radiation was 
observed, but recent years (2020 to 2022) 
have shown a decreasing trend, reaching the 
lowest level (Fig. 12C).

Human drivers

Human parameters significantly influence 
vegetation growth in the Tian Shan ecologi-
cal zone, as highlighted in the study. Nota-
bly, the Light Index and CNLI serve as key 
indicators of human presence and activities 
in the region, showing an increasing trend 
since 2000. In 2019, record-high levels were 
observed, with the Light Index and CNLI 
reaching 72% and 11%, respectively (Tab. 3). 

The changes in CNLI percentages and average DMSP 
values are graphically depicted in column and circular 
charts, with the highest average DMSP recorded in 2019 
(Fig. 13).

The study demonstrates the use of nighttime light 
data from DMSP to simulate human activity intensity 
and assess its impact on habitat quality, showcasing 
the feasibility of evaluating human activities’ effects 

A

C

B

Figure 12. Changes in the downward shortwave radiation mean (A), changes in the downward shortwave radiation slop/
anomaly (B), and changes in the average shortwave radiation of Tian Shan ecoregions during the statistical period of 
2000–2022 (C)

Table 3. Statistics related to human drivers from 2000 to 2020 using 
advanced sensors and night data extraction   

Year Mean 
value Sum (S) Total 

sum

Mean 
(zonal 

statistic)

Light 
index 
(%)

CNLI 
(%)

DMSP NTL 2000 0.2365 8,959 342,016 8.78 23   0.36
DMSP NTL 2005 0.3348 12,394 342,016 9.10 33   0.52
DMSP NTL 2010 0.5766 23,919 342,000 8.15 57   0.90
DMSP NTL 2015 1.7730 79,304 342,016 7.33 17   2.60
DMSP NTL 2018 3.9763 184,971 342,016 7.34 39   6.30
DMSP NTL 2019 7.2632 317,604 342,016 7.75 72 11.00
DMSP NTL 2020 2.1115 79,180 342,016 9.11 21   3.34



Folia Forestalia Polonica, Series A – Forestry, 2024, Vol. 66 (3), 155–182

Monitoring the temporal-spatial changes of vegetation cover and drivers in Tian Shan ecoregions, China 169

	 DMn = 
S

√–N
	 (1)

on habitat through such data on a global scale (Zhao et 
al. 2022). The spatial patterns of DMSP nighttime data 
from 2000 to 2020 in Tian Shan ecoregions are illustrat-
ed in Figure 14, indicating increasing human presence 
and activity over time. The study suggests a  positive 
correlation between human indicators and plant indi-
cators, showcasing the beneficial influence of human 
activities on vegetation development in the region. The 
average DMSP values ranged from 0 to 63, with higher 
values concentrated in the western, northern, and north-
eastern areas of Tian Shan, correlating with increased 
vegetation cover and forestry activities. The study high-
lights the continuous expansion of human activity and 
its positive effects on vegetation in the area.

A

B

Figure 13. Chart of human parameter changes during the 
statistical period

The study depicted in Figure 15 presents 3D scatter 
plots analyzing the influence of climate, environmen-
tal factors, and human activities on NDVI and EVI in 
the Tian Shan ecoregions. These plots help in assessing 
data normality and visualizing the complex relation-
ships between the variables. The X and Y axes repre-
sent the dependent variables (NDVI and EVI), while 
the Z  axis represents independent variables capturing 
climatic, environmental, and human drivers. The re-
search underscores that climatic and environmental 
parameters significantly impact vegetation in the Tian 
Shan ecoregions, with factors like precipitation, radia-
tion, soil moisture, runoff, and temperature playing cru-

cial roles. The study utilized Pearson correlation and the 
Matrix network to establish these relationships, high-
lighting the key role of air temperature and wind speed 
in affecting NDVI and EVI in the region.

In a review of trends in 3D LST scattering graphs in 
Tian Shan ecoregions, it is noted that some data points 
have been excluded, causing oscillations in the data 
(Fig. 15). The relationship between LST and vegetation 
varies throughout the seasons, with a negative correla-
tion in warm seasons and a positive correlation in cold 
seasons. The preservation of vegetation in Tian Shan 
winters over a 23-year period is attributed to radiation 
levels. Wind speed is identified as a  factor leading to 
vegetation loss, showing a negative regression relation-
ship with plant indicators. By utilizing 3D scatter plot 
models, researchers examine the relationship between 
vegetation indices, such as NDVI and EVI, with CNLI 
and DMSP in the Tian Shan ecoregions. The study finds 
a strong positive correlation (Pearson correlation coef-
ficient >0.73) between these variables. Human presence 
in the region is linked to vegetation development, wa-
ter and soil conservation efforts, and mitigation of soil 
erosion, contributing to the overall improvement of the 
ecosystem.

Correlation matrix

A  correlation matrix is a  tabular representation that 
displays correlation coefficients between different vari-
ables. Each cell in the matrix showcases the correlation 
between two specific variables. This matrix is utilized 
for summarizing data, serving as an input for more ad-
vanced analyses, and functioning as a  diagnostic tool 
for advanced analytical processes (Tab. 4).

The study analyzed the correlation between vari-
ous environmental parameters and vegetation indices 
NDVI and EVI. The results revealed that soil moisture 
had the most significant negative correlation effects on 
both NDVI (–0.58) and EVI (–0.57), followed by the 
wind speed with values of –0.30 and –0.32, and DSR 
with an inverse correlation to vegetation. SWE and AEa 
showed weak associations with NDVI and EVI. Runoff 
had the least impact on the indices. Notably, precipita-
tion and transpiration, as well as precipitation and run-
off, exhibited the highest correlation values of 0.94 and 
0.92, respectively. These findings highlight the complex 
interplay between environmental factors and vegetation 
health (Tab. 4).
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Figure 14. Effects of DMSP during different statistical periods from 2000 to 2019 
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The study conducted in the Tian Shan ecoregions 
reveals a  significant positive correlation between hu-
man parameters and vegetation indicators, showcasing 
the impacts of human activities and climatic variables 
on vegetation dynamics. Table  5 presents the correla-
tion analysis results, demonstrating that NDVI shows 
a strong positive correlation with human activity prox-
ies CNLI (0.74) and DMSP (0.73), indicating a higher 
vegetation cover in areas with more human presence 
and intervention. In contrast, the relationship between 
EVI and human activity proxies is weaker. The study 
suggests that NDVI is more sensitive to detecting posi-
tive impacts of activities like vegetation restoration, 
pasture and watershed management, and soil conser-
vation, leading to an expansion of vegetation cover in 
the region. The findings highlight that human activi-
ties have been a dominant driver of vegetation changes, 
surpassing the influences of climate, and environmen-
tal factors, emphasizing the increasing positive impact 
of human activities on vegetation development in the 
region over recent years. The matrix model illustrates 
a  strong correlation between the vegetation indicators 
NDVI and EVI and key human drivers in the Tian Shan 
ecosystems, suggesting a  link between human activi-
ties and ecosystem management initiatives like natural 
resource conservation, forestry, plantation activities, 
watershed vegetation restoration, ecotourism, and road 
construction to prevent seasonal fires. This highlights 
the significant influence of human interventions on the 
ecological balance in the area.

Table 5. Correlation matrix of human parameters and 
vegetation cover index of Tian Shan ecoregions

Parameters EVI NDVI DMSP CNLI
EVI 1
NDVI 0.9940 1
DMSP 0.7259 0.7388 1
CNLI 0.7349 0.7480 0.9995 1

Pearson’s correlation coefficient

The Pearson correlation coefficient (r) is a widely used 
method to measure linear correlations between two 
variables. It ranges from –1 to 1, indicating both the 
strength and direction of the relationship. The coeffi-
cient is appropriate when the relationship is linear, both 
variables are quantitative, they follow a normal distri-Ta
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bution, and there are no outliers. The correlation value 
also represents the effect size of the correlation. To in-
terpret the effect size, Cohen’s guidelines (Cohen 1988) 
are often followed, as shown in Table 6.

Table 6. Correlation value and effect size

Correlation value (r) Level
–1.0 Perfectly negative
–0.8 Strongly negative
–0.5 Moderately negative
–0.2 Weakly negative
  0.0 No association
  0.2 Weakly positive
  0.5 Moderately negative
  0.8 Strongly positive 
  1.0 Perfectly positive

Figure 16. Normal distribution charts and residuals plots of 
NDVI and EVI in Tian Shan ecoregions

Pearson’s test was used to measure the correlation 
between vegetation indices (NDVI and EVI) and cli-
mate parameters and environmental and human drivers 
in Tian Shan ecoregions. Before applying the test, data 
normality was checked and confirmed (Fig. 16). The test 
results indicate a  significant correlation between vari-
ables when the P-value is less than 0.05 (95% level) and 
the correlation coefficient (r) measures the influence of 
parameters. Additionally, residual plots were used to as-
sess homogeneity of variance and detect outliers (>±3). 
Linear regression was employed to determine the best-
fitting line, enabling prediction of output values based 
on given inputs. Normal probability plots were used to 
assess normality of the dependent variable data (5).

Correlation between NDVI and EVI

Pearson correlation coefficient showed that NDVI and 
EVI are perfectly related together with a value of 0.991 
(Tab.  7) in Tian Shan ecoregions, although NDVI is 
very common to calculate vegetation and EVI is much 
more sensitive to atmospheric errors and is suitable for 
dense covers.

Table 7. Pearson correlation between vegetation indices

Parameter Value
Pearson correlation coefficient (r)   0.991
P-value   0.000
Covariance   0.000
Sample size (n) 23.000
Statistic 35.122

Correlation between climatic and environmental 
parameters with NDVI and EVI

The study conducted in the Tian Shan ecoregions ex-
plored the relationship between the NDVI and EVI indi-
ces with various climate and environmental parameters, 
emphasizing the significant correlation with soil mois-
ture (Fig. 17 and 18). Tables 8 and 9 provided a  clear 
indication of the values and effectiveness of these rela-
tionships. The analysis revealed a strong negative cor-
relation (Pearson coefficients of –0.58 for NDVI and 
–0.57 for EVI) between vegetation indicators and soil 
moisture, suggesting that as soil moisture increases, 
vegetation indicators decrease due to water-filled stress 
and saturated soil conditions caused by factors like 
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swamps, rivers, lakes, and snow-covered mountains. 
The findings underscored the impact of seasonal vari-
ations, particularly in the cold seasons, on hindering 
vegetation growth in the region.

The Pearson regression model indicated weak-to-
typical correlations between NDVI and EVI with DSR 
parameters of –0.277 and –0.251, showcasing a nega-
tive relationship with the wind speed as well (r = –0.306 
and –0.315) as shown in Tables 8 and 9. The negative 
impact of DSR and wind speed on plant development 
and growth elucidates these associations. Conversely, 
Snow Water Equivalent and Actual Evapotranspiration 
parameters displayed relatively weak to normal posi-
tive correlations with NDVI and EVI (r = 0.283, 0.243, 
0.226, 0.223), while the LST index exhibited an abnor-
mal relationship with the plant indices. However, the 
remaining precipitation and temperature parameters, 
PDSI drought index, and runoff demonstrated weak 
connections with NDVI and EVI, prompting further 
discussion and analysis in this area (Tab. 8 and 9).

Table 8. Relationship between climate and environmental 
variables with NDVI using Pearson regression model

Parameters P-value r Cova-
riance T N

N
D

V
I

LST 0.380   0.190   0.002   0.089

23

Total 
precipitation 0.840   0.044   0.001   0.089

Soil moisture 0.003 –0.588 –0.121 –3.299
DSR 0.211 –0.277 –0.070 –1.289
Air temperature 
at 2 m 0.871   0.035   0.000   0.163

PDSI 0.663   0.095 –0.202 –0.441
Runoff 0.989   0.002   0.000   0.013
Snow water 
equivalent 0.190   0.283   0.016   1.353

Wind speed 0.154 –0.306 –0.026 –1.447
Actual evapo-
transpiration 0.298   0.226   0.046   1.065

The vegetation patterns in a  region are strongly 
influenced by environmental factors which have expe-
rienced significant fluctuations between dry and wet 
conditions over time, leading to the current vegetation 
distribution observed amidst substantial environmental 
changes (Wang et al. 2005). These interactions between 

vegetation and environmental factors occur at different 
temporal scales, with intricate and nonlinear relation-
ships especially prevalent at a  regional level (Zhang 
et al. 2018). The distribution of vegetation types like 
mountain steppe, seasonal grassland, common steppe, 
and desert steppe within the region is largely shaped by 
soil moisture factors, with human activities at a  local 
scale potentially contributing to vegetation changes as 
well (Shao et al. 2018). Moreover, non-climatic environ-
mental alterations, including variations in soil moisture 
levels, can impact the correlation between NDVI and 
EVI, highlighting the need to account for uncertainties 
when predicting NDVI responses to future changes (Li-
ang and Yang 2016; Pei et al. 2019).

Table 9. Relationship between climate and environmental 
variables with EVI using Pearson regression model

Parameters P-va-
lue r Cova-

riance T N
EV

I

LST 0.311   0.219   0.000 1.023

23

Total 
precipitation 0.840   0.043   0.000   0.201

Soil moisture 0.003 –0.577 –0.074 –3.021
DSR 0.247 –0.251 –0.041 –1.185
Air temperature 
at 2m 0.188   0.032   0.000   0.150

PDSI 0.597   0.116 –0.153 –0.536
Runoff 0.979   0.055   0.000   0.155
Snow water 
equivalent 0.262   0.243   0.009   1.152

Wind speed 0.142 –0.315 –0.016 –1.522
Actual evapo-
transpiration 0.305   0.223   0.038   1.051

The study revealed a strong correlation between the 
vegetation indices NDVI and EVI, indicating that they 
share similarities. Factors such as wind speed, snow 
water equivalent, DSR, and soil moisture were identi-
fied as impactful on these indicators in various align-
ments. EVI was recognized for its ability to consider 
atmospheric conditions and reduce canopy background 
noise, showing higher sensitivity in densely vegetated 
regions compared to NDVI. The average NDVI over the 
23-year period was 0.173, with values ranging from –1.0 
to 1.0 indicating different land cover types. The Tian 
Shan ecoregion exhibited sparse vegetation. Further 
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analysis revealed the relationships between EVI and the 
environmental driver parameters as follows:

Correlation between human activities and NDVI 
and EVI

Results of the Pearson correlation indicated that there is 
a large positive (Relatively strong) relationship between 
NDVI and DMSP, (r(5) = 0.738, p = 0.048), and a large 
positive relationship between NDVI and CNLI, (r(5) = 
0.748, p = 0.043) (Tab. 10).

Table 10. Pearson correlation between NDVI and mean 
DMSP 

Parameter DMSP CNLI
Pearson correlation coefficient (r) 0.73800 0.748
P-value 0.04800 0.043
Covariance 0.02241 0.034
Sample size (n) 7 7
Statistic 2.45100 2.520

Plant indicators in Tian Shan ecoregions show 
a  unique relationship with human presence. Contrary 
to the expected negative impact of human activities on 
vegetation cover, it is found that human presence can 
have a positive and closely related effect on plant indica-
tors in the area. The model suggests that efforts should 
be directed toward conserving, enhancing, and sustain-
ably utilizing biological resources and the global eco-
logical heritage in these ecoregions.

Anomalies and changes in vegetation cover in time 
series 2000–2022

Over a span of 23 years, from 2000 to 2022, the study 
analyzed and represented the anomalies and transfor-
mations in vegetation within the Tian Shan Ecoregions. 
The findings illustrated in Table 11 and Figure 19 pre-
sent the extent and ratios of deforestation, afforesta-
tion, unchanged vegetation areas, and regions targeted 
for vegetation rehabilitation efforts. The study indi-
cated that deforestation and vegetation reduction only 
increased by 3% covering 7190.119633 square kilom-
eters, whereas afforestation activities demonstrated 
significant growth by 6%, expanding over 12,089.28333 
square kilometers. Additionally, a considerable portion 
of the Tian Shan ecoregions, accounting for 36% with 
78,733.91197 square kilometers, maintained unchanged 

vegetation cover, while 55% with 120,032.6253 square 
kilometers remained devoid of vegetation.

Table 11. Vegetation anomalies and changes during the 
period from 2000 to 2022

Description of the changes Area (km2)

No vegetation (unchanged) 120,032.63

Deforestation 7,190.12

Afforestation 12,089.28

Vegetation (unchanged) 78,733.91

According to studies conducted by Li et al. (2020) 
and Q.  Wang et al. (2020), the implementation of the 
Grain to Green project in Southwest China has contrib-
uted to the growth of vegetation. This positive trend has 
been observed not only in Southwest China but also in 
various regions across the country, leading to a signifi-
cant increase in forested areas.

Figure 19. Anomaly and changes in vegetation area during 
the period 2000–2022

Anomalies and changes in land-use and land cover 
in the time series 2001–2021 

To monitor land-use changes and land cover in the Tian 
Shan ecoregion, which denotes physical land types like 
forests or open water, we analyze how resources and 
land are utilized. By assessing data and land cover maps 
over time, ecological managers can track land-use pat-
terns and alterations. The study will integrate land cover 
details for various essential purposes such as evaluating 
non-point sources of pollution, comprehending land-
scape variables for environmental analysis, assessing 
chemical behaviors, and analyzing air pollution impacts
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The finding of LULC prediction for 2001 

In 2001, the Tian Shan region exhibited distinct 
land-use and land cover (LULC) classifications. The 
smallest area was occupied by Evergreen Needleleaf 
Forests, covering 41.51 square kilometers and domi-
nated by evergreen conifer trees, while the largest area 
belonged to Grasslands spanning 142,376.597 square 
kilometers with herbaceous annuals. Grasslands pre-
dominantly covered the northwest, central, and north-
east regions, forming barren areas in the southwest 
and southeast. The barren areas were characterized by 
desert conditions with minimal water and dry grass. 
Croplands were prevalent in central regions, while the 
western parts were rich in coniferous and broad-leaved 
forests, contributing significantly to the biological bal-
ance within the Tian Shan ecoregions. These land 
cover types, along with barren lands and croplands, 
constituted the primary classifications in the LULC, 
comprising 65.28%, 25.43%, and 7.7% of the total area 
in 2001. The diverse LULC patterns in the Tian Shan 
region play a crucial role in supporting plant and ani-
mal species richness, carbon fixation cycles, microcli-

mate improvements, and overall biological stability 
within the ecoregions (Tab. 12, Fig. 20).

Figure 20. Visual pattern and classifications of LULC 
in 2001 in Tian Shan ecoregions

The finding of LULC prediction for 2021 

In 2021, the Tian Shan ecoregions database revealed 
the dominance of grasslands spanning 145,028.7926 
square kilometers, representing 66.54% of the total 

Table 12. Area and percentage and classifications of LULC

Value Description (LULC 2001)
Year 2001 Year 2021

area (km2) percent area (km2) percent

0 Water bodies: at least 60% of area is covered by permanent water 
bodies 554.99   0.25 563.78 0.250

1 Evergreen Needleleaf Forests: dominated by evergreen conifer trees 
(canopy >2m). Tree cover >60%. 41.51   0.01 21.05 0.009

5 Mixed Forests: dominated by neither deciduous nor evergreen (40–60% 
of each) tree type (canopy >2m). Tree cover >60% 248.60   0.11 173.45 0.070

9 Savannas: tree cover 10–30% (canopy >2m) 334.55   0.15 102.25 0.040

10 Grasslands: dominated by herbaceous annuals (<2 m) 142,376.59 65.28 506.15 0.230

11 Permanent wetlands: permanently inundated lands with 30–60% water 
cover and >10% vegetated cover 344.95   0.15 145,028.79 66.540

12 Croplands: at least 60% of area is cultivated cropland 16,810.66   7.70 83.62 0.030

13 Urban and built-up lands: at least 30% impervious surface area 
including building materials, asphalt, and vehicles 92.25   0.04 17,376.65 7.970

14 Cropland/natural vegetation mosaics: mosaics of small-scale cultivation 
40–60% with natural tree, shrub, or herbaceous vegetation 40.74   0.01 61.50 0.020

15 Non-vegetated lands: at least 60% of area is non-vegetated barren (sand, 
rock, soil) or permanent snow and ice with less than 10% vegetation 1,754.22   0.80 156.22 0.070

16 Barren: at least 60% of area is non-vegetated barren (sand, rock, soil) 
areas with less than 10% vegetation 55,469.53 25.43 2,368.31 1.080
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area (Tab. 13), characterized by herbaceous annuals. In 
contrast, the Evergreen Needleleaf Forests comprised 
a  mere 0.009% of the ecoregions, covering around 
21.055089 square kilometers, with over 60% tree cover 
and exceeding 2  meters in canopy height. Croplands 
and barren areas accounted for 7.97% and 23.62%, re-
spectively, showcasing significant land-use diversity. 
The landscape analysis depicted grasslands mostly in 
central and northern Tian Shan, barren desert regions 
in the south and southwest, and sporadic broadleaf co-
niferous forests. Farmlands were prominent in central 
regions, while other unique classifications added to the 
visual richness of the ecoregions. This LULC pattern 
analysis is summarized in Table  12 and visualized in 
Figure 21.

The term “Top Three classes” is used in the graphs 
because these three classes have the highest area ratio 
and percentage in land-use in 2001 and 2021. The term 
“Other Unique Classes” refers to ecological reserves 
and World Heritage sites. One example is the Tian Shan 
montane conifer forests, which consist of two main for-
est types: “Evergreen Needleleaf Forests” dominated 
by evergreen conifer trees with a tree cover exceeding 
60%, and “Mixed Forests” with a  balance of decidu-
ous and evergreen trees (40–60% of each type) and 
a  tree cover exceeding 60%. From 2001 to 2021, the 
coniferous community has decreased in extent, while 
the mixed broadleaf and coniferous community has ex-
panded. The coniferous forest area reduced from 41.5 
to 21 square kilometers, while the mixed forest area in-
creased from 248.6 to 173.4 square kilometers.

The Tian Shan ecoregion is a bio-reserve estimated 
to have a  life span of 2.5–7  million years (Carpenter 
2000; Su et al. 2007). It is home to unique species such as 
the endemic karelini subspecies of Argali and Siberian 
Ibex, as well as endangered species like the Snow leop-
ard. The region also supports dispersed populations of 
carnivores such as the gray wolf and Himalayan brown 
bear. Breeding populations of various bird species, in-
cluding black stork, golden eagle, Houbara bustard, and 
bearded vulture, are found in Tian Shan. Conservation 
efforts are ongoing to monitor and protect these species 
and their habitats. Measures such as monitoring grazing 
activity, promoting wildlife connectivity, cross-border 
conservation opportunities, and studying the impacts of 
climate change on ecosystem cycles can help preserve 
the region’s biodiversity.

Figure 21. Visual pattern and classifications of LULC 
in 2021 in Tian Shan ecoregions

CONCLUSIONS 

The study aims to understand the spatial patterns of 
vegetation dynamics in the vulnerable Tian Shan ecore-
gions and forecast the impact of future climate change 
on vegetation. The research explores the influences of 
human activities, climate conditions, geographical fac-
tors, and environmental impacts on vegetation. The re-
sults indicate the presence of healthy vegetation in the 
region, which is attributed to human presence and ac-
tivities. NDVI and EVI indicators show positive trends, 
suggesting afforestation. There is a positive correlation 
between NDVI and human activities, as well as climat-
ic and environmental parameters. However, a negative 
correlation is observed between NDVI/EVI and soil 
moisture due to high-altitude complications and freez-
ing phenomena. The study emphasizes the importance 
of preserving and supporting unique ecosystems in the 
region. Overall, the findings highlight the dual role of 
positive human performance and constructive activities 
in mitigating the effects of unpredictable climate and 
environmental factors on vegetation in the Tian Shan 
ecoregions. 
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